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1 Introduction

The quantity of interest is the average of some characteristic yi in a finite population of N

units indexed by i ∈ {1, . . . , N}:

µ =
1

N

N∑
i=1

yi.

We observe yi only for a subset S of the units, and the task is to estimate µ based on this

information.

Narain (1951) and Horvitz & Thompson (1952) provide an estimator of µ when the

subset of observed units is random. The estimator is conventionally named after the second

set of authors, and we will not depart from that convention here. At the core of the

Horvitz–Thompson estimator is the probability distribution of S over the power set of the

unit indices, which is said to be the design of the study. Given a design, the estimator is

µ̂ =
1

N

∑
i∈S

yi
πi
,

where πi = Pr(i ∈ S) is the inclusion probability for unit i. These probabilities are taken

to be known in this note, but they may sometimes be estimated. Examples of such settings

include estimation of response propensities for unit non-response in survey sampling and

estimation of propensity scores for unknown assignment mechanisms in causal inference.

The application of the estimator to questions in survey sampling is immediate. The

characteristics are survey responses, and S collects the sampled units. Its application

to causal questions is also straightforward. The characteristics are in this case potential

outcomes given by treatments assigned to the units (Neyman, 1923; Holland, 1986). For

example, if yi(1) denotes unit i’s outcome when assigned to active treatment and yi(0)

denotes the outcome when assigned to control treatment, the average treatment effect can

be written as µ1 − µ0 where µ1 and µ0 are the population averages of yi(1) and yi(0). The

inferential challenge is that no more than one potential outcome is observed for any of the

units. The other outcomes are counterfactual, and at least one (but generally both) of

µ1 and µ0 are unobserved even when the complete population is sampled. In this case,
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S collects all sampled units assigned to a certain treatment condition, and the Horvitz–

Thompson estimator provides an estimate of the average of the corresponding potential

outcome. The contrast between two such estimators is an estimate of the average treatment

effect.

The purpose of this note is to investigate some of the asymptotic properties of the

Horvitz–Thompson estimator. Our particular focus is to extend current concentration

results for general designs. We show that the estimator is consistent under weaker and

more general conditions than previously known. The estimator has inspired a large class

of estimators providing improvements in various directions. In an appendix, we show that

our results extend to some of these improved estimators as well.

2 Consistency of the Horvitz–Thompson estimator

2.1 Sampling inferences

We consider an asymptotic regime in which the number of units in the population grows

without limit, N → ∞. All quantities depending on the population, including the design

and the quantity of interest, are therefore sequences indexed by N . The index will, however,

be suppressed in the following discussion as it eases the exposition without confusion.

A disadvantage of the regime is that the rates of convergence are expressed with respect

to the population size rather than the sample size. The sample and the population are,

however, connected through the design. If π̄ = N−1
∑N

i=1 πi denotes the average inclusion

probability, then the sample size |S| is related to the population as E
[
|S|
]

= π̄N . We

require that π̄ > 0, so that S is not always empty, but we allow π̄ → 0.

It will prove useful to rewrite the estimator slightly. Let Si = 1[i ∈ S] be an indicator

taking the value one when unit i is in the sample, and zero otherwise. The estimator can

now be written as a sum over the population:

µ̂ =
1

N

N∑
i=1

Siwiyi,
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where wi = 1/πi when πi > 0 and wi = 0 otherwise. The definition of wi ensures that the

estimator is well-defined also when some units have no chance of being sampled.

We will compare inclusion probabilities between units, so a normalization will expedite

the discussion. Let π̃i = πi/π̄ be the inclusion probability of unit i normalized by the

average probability. If π̃i is greater than one, unit i is disproportionately likely to be

sampled. If π̃i = 1 for all units, the design is uniform in the sense that all units are equally

likely to be sampled. Similarly, let w̃i = π̄wi be the normalized version of wi. That is,

w̃i = 1/π̃i when πi > 0 and w̃i = 0 otherwise.

Condition 1. There exist p > 2 and q > 1 with pq ≥ p+ 2q such that the pth population

moment of the variables of interest and the qth population moment of the sampling weights

are bounded:[
1

N

N∑
i=1

|yi|p
]1/p
≤ ky, and

[
1

N

N∑
i=1

w̃qi

]1/q
≤ kπ.

The constants, p, q, ky and kπ, are fixed throughout the asymptotic sequence.

The moment conditions provide control over the variable of interest and the design.

The first part ensures that units with very large values of yi are rare in the population.

The condition does not rule out that the variable grows indefinitely for some units, but

such units must be a diminishing fraction of the population. In particular, the condition

will fail if a fraction of the population, diminishing at a sufficiently slow rate, has yi →∞

at a sufficiently fast rate.

The second part of the condition ensures that the design does not sample some units

disproportionately infrequently. The normalized inclusion probability is small if a unit

is sampled rarely compared to the remaining units in the population, making w̃i = 1/π̃i

large. The condition thus requires that the inclusion probabilities do not deviate too far

from their average. The condition will fail if a sufficiently large fraction of the population

has πi → 0 at a sufficiently faster rate than π̄ → 0.

The two moment conditions are connected because pq ≥ p+ 2q. This means that more

control over the variables of interest allow us to have less control over the design. The
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appropriate allocation of control will depend on the application at hand. However, it is

common to assume that the fourth moment of variables of interest is bounded, p = 4, and

this setting may provide some intuition. Condition 1 here dictates that q ≥ 2, which means

that the second moment of w̃i is bounded. An example of such a design is when πi = 1/4

for all units except for bN0.5c units with πi = 1/4N0.25.

Together with the quantity defined next, Condition 1 provides a bound on the variance

of the estimator.

Definition 1. Let π̃i|j = Pr(i ∈ S | j ∈ S)/π̄ be the normalized inclusion probability of

unit i conditional on that unit j is sampled. If πj = 0, then set π̃i|j = π̃i to capture that a

unit that is never sampled provides no information about whether another unit is sampled.

The average design dependence is

D(r) =

[
1

N2

N∑
i=1

∑
j 6=i

∣∣π̃i|j − π̃i∣∣1/r]r.
Lemma 1. Under Condition 1, Var(µ̂) ≤ k2ykπ/π̄N + k2ykπD(1− 1/p− 1/q).

Proof. The sampling indicators are the only random variables, so

Var(µ̂) =
1

N2

N∑
i=1

w2
i y

2
i Var(Si) +

1

N2

N∑
i=1

∑
j 6=i

wiwjyiyj Cov(Si, Sj).

Focusing on the first term, observe that Var(Si) = πi(1− πi). It follows that w2
i Var(Si) =

wi(1−πi) ≤ wi when πi > 0, and w2
i Var(Si) = 0 = wi when πi = 0. Use Hölder’s inequality

to separate the variables of interest from the normalized sampling weights:

1

N2

N∑
i=1

wiy
2
i =

1

π̄N2

N∑
i=1

w̃iy
2
i ≤

1

π̄N2

[ N∑
i=1

|yi|p
]2/p[ N∑

i=1

w̃
p/(p−2)
i

](p−2)/p
,

where p/2 and p/(p− 2) are Hölder conjugates. Because the reciprocals of the conjugates

sum to one, N = N2/pN (p−2)/p, and the bound can be written as

1

π̄N

[
1

N

N∑
i=1

|yi|p
]2/p[

1

N

N∑
i=1

w̃
p/(p−2)
i

](p−2)/p
.
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The second factor is bounded by k2y and needs no further attention. For the third factor,

observe that Condition 1 implies q ≥ p/(p− 2), and apply Jensen’s inequality to get[
1

N

N∑
i=1

w̃
p/(p−2)
i

](p−2)/p
≤
[

1

N

N∑
i=1

w̃qi

]1/q
≤ kπ.

The first term of the expression for Var(µ̂) is thus bounded by k2ykπ/π̄N .

We take care of the second term in a similar way. First, observe that

wiwj Cov(Si, Sj) =
Pr(i ∈ S, j ∈ S)− πiπj

πiπj
=
π̃i|j − π̃i

π̃i
,

when πi > 0 and πj > 0. When either probability is zero, Cov(Si, Sj) = 0. Hence, we have

wiwj Cov(Si, Sj) = w̃i
(
π̃i|j− π̃i

)
for all πi and πj. Let r = 1− 1/p− 1/q and apply Hölder’s

inequality with conjugates p, q and 1/r to get

N∑
i=1

∑
j 6=i

yiyjw̃i
(
π̃i|j − π̃i

)
≤
[ N∑
i=1

∑
j 6=i

|yiyj|p
]1/p[ N∑

i=1

∑
j 6=i

w̃qi

]1/q[ N∑
i=1

∑
j 6=i

∣∣π̃i|j − π̃i∣∣1/r]r.
Factor N2 as N2/pN2/qN2r, so 1/N2 can be distributed into the three factors. Using

Condition 1, bound the first factor as[
1

N2

N∑
i=1

∑
j 6=i

|yiyj|p
]1/p
≤
[

1

N2

N∑
i=1

N∑
j=1

|yiyj|p
]1/p

=

[
1

N

N∑
i=1

|yi|p
]2/p
≤ k2y,

and, in a similar fashion, bound the second factor by kπ. The third factor is equal to the

average design dependence, D(r), with r = 1− 1/p− 1/q.

The first term in the bound in Lemma 1 relates the variance to the expected sample

size: E
[
|S|
]

= π̄N . Disregarding the second term, the variance would diminish at the

conventional linear rate in the size of the sample. The term makes clear that the estimator

may not concentrate unless the design is such that π̄N →∞.

The second term captures sampling dependence between pairs of units. The difference

Pr(i ∈ S | j ∈ S) − Pr(i ∈ S) measures the knowledge we gain about whether unit i is

sampled when we know that unit j is sampled. The more it deviates from zero, the more

knowledge we gain. We get π̃i|j − π̃i when this difference is normalized to be on the same
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scale as the normalized inclusion probabilities. The average design dependence, D(r), is

the average of the normalized difference over all pairs of units, providing a measure of

the overall dependence introduced by the design. If r = 1, the average is the ordinary

arithmetic mean. If r < 1, the average emphasizes larger dependencies.

Condition 2 (Weak design dependence). D(1− 1/p− 1/q)→ 0.

We want the average design dependence to be low because this provides more control

over the variance. In particular, if the quantity diminishes, as captured in Condition 2,

then the dependencies are sufficiently weak to ensure that the effective sample size grows

with the nominal one. It may be instructive to consider the rates at which the dependence

diminishes for conventional designs. First, consider a Bernoulli or Poisson design, in which

case the units are sampled independently. Here, π̃i|j = π̃i and D(r) = 0. Next, consider

when a simple random sample is taken, so |S| = π̄N is fixed and the design is otherwise

uniform. In this case, π̃i|j − π̃i = (1 − π̄)/π̄(N − 1) and D(r) = O(1/π̄N). Finally,

consider when the units are sampled in clusters. Partition {1, . . . , N} into Nc = bN/kc

disjoint groups of size k, where we set N = kNc throughout the asymptotic sequence for

convenience. Sample the groups independently, each with probability π̄. Here, π̃i|j = 1/π̄

if i and j are in the same group, and π̃i|j = π̃i otherwise. It follows that D(r) = O(1/π̄N r
c ).

For designs with strong dependencies, such as cluster sampling with a fixed number of

clusters and various systematic sampling design, the average design dependence may be

fixed, indicating that the effective sample size does not grow with N .

Lemma 1 together with Condition 2 ensure that the sampling distribution of the es-

timator concentrates, but they do not control where it does so. The concern is that we

may never observe some units. These units would affect the population mean but not the

estimator. In the worst case, when πi = 0 for all units, Var(µ̂) = 0, but the estimator is

constant at zero no matter the value of µ. Unless one makes structural assumptions allow-

ing for extrapolation, the only way to control the point of convergence is to ensure that a

sufficiently small fraction of the population is excluded by the design so to not noticeably

affect µ.
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Definition 2. Let ei = 1[πi = 0], so that ei = 1 if unit i is excluded by design and ei = 0

otherwise. Let ē = N−1
∑N

i=1 ei denote the share of excluded units in the population.

Lemma 2. Under Condition 1,
∣∣µ− E[µ̂]

∣∣ ≤ 2kyē
1−1/p.

Proof. It is only units with ei = 1 that could shift the location of the sampling distribution

away from the population mean:

µ− E[µ̂] =
1

N

N∑
i=1

[
yi − πiwiyi

]
=

1

N

N∑
i=1

eiyi,

where the last equality follows from πiwi = 1 − ei. To gain control over this quantity, let

ai = 1
[
|yi| > c

]
where c = ky/ē

1/p, except ai = 0 when ē = 0. Write the bias as

∣∣µ− E[µ̂]
∣∣ ≤ 1

N

N∑
i=1

ei|yi| =
1

N

N∑
i=1

aiei|yi|+
1

N

N∑
i=1

(1− ai)ei|yi|.

For the first term, observe that cp−1ai|yi| ≤ |yi|p because Condition 1 ensures that p > 2.

It follows that
1

N

N∑
i=1

aiei|yi| ≤
c1−p

N

N∑
i=1

|yi|p ≤ c1−pkpy .

For the second term, observe that (1− ai)|yi| ≤ c, so

1

N

N∑
i=1

(1− ai)ei|yi| ≤
c

N

N∑
i=1

ei = cē.

Recall that c = ky/ē
1/p, so c1−pkpy and cē are both equal to kyē1−1/p.

One can prove the lemma using Hölder’s inequality in a way similar to the proof of

Lemma 1, but the more elementary proof presented here demonstrates the underlying idea

better.

The two lemmas provide control over the location and width of the sampling distribu-

tion. Together, they provide control over the deviation from the population mean, and we

are ready for the main result.

Proposition 1. Under Condition 1, the mean square error is bounded as

E
[
(µ̂− µ)2

]
≤ 4k2y ē

2−2/p + k2ykπ/π̄N + k2ykπD(1− 1/p− 1/q).
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Proof. Decompose the mean square error into the squared bias and variance, and apply

the bounds from Lemmas 1 and 2.

Corollary 1. The Horvitz–Thompson estimator converges in quadratic mean to the popu-

lation mean if ē→ 0 and π̄N →∞ in addition to Conditions 1 and 2.

2.2 Causal inferences

The literature on causal inference has a long-standing interest in the Horvitz–Thompson

estimator, where it sometimes is called the inverse probability weighted estimator. This

literature tends to focus on an asymptotic regime in which the sample is assumed to consist

of independently and identically distributed observations from an infinite super-population.

Some of the nuances of the design-based perspective are lost with this regime. Focus has

instead been on estimated inclusion probabilities and the estimator’s efficiency (see, for

example, Robins & Ritov, 1997; Hahn, 1998; Hirano et al., 2003). There are, however,

exceptions. A contribution of particular note is Aronow & Middleton (2013). The authors

study finite sample properties of the Horvitz–Thompson estimator for causal quantities in

a design-based framework. The discussion in this section complements their analysis with

large sample results.

Let Z be a set of treatment conditions. In the standard setting, as described in the

introduction, Z = {0, 1}, but Z may be any countable set. A potential outcome yi(a) is

the response of unit i when assigned to treatment a ∈ Z. The notation presumes that

the responses are unambiguous for each treatment condition, ruling out, for example, that

the treatment assigned to one unit affects the response of another unit. The quantity of

interest is the contrast between the average of the potential outcomes for two treatment

conditions a and b:

τ(a, b) =
1

N

N∑
i=1

yi(a)− 1

N

N∑
i=1

yi(b).

We can approach the estimation of τ(a, b) as two separate estimation exercises of the

type considered in the previous section. In the first exercise, the population characteristic
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is yi(a), and the sample, denoted by Sa, collects all units assigned to condition a, for which

we observe yi(a). The design is the probability distribution of Sa. The second sampling

exercise is the analog with b substituted for a.

The estimator of τ(a, b) is the difference between the two Horvitz–Thompson estimators

for the corresponding two sampling exercises:

τ̂(a, b) =
1

N

∑
i∈Sa

yi(a)

Pr(i ∈ Sa)
− 1

N

∑
i∈Sb

yi(b)

Pr(i ∈ Sb)
.

Corollary 2. If Condition 1 holds with respect to the design and potential outcomes for

both a and b, the mean square error is bounded as

E
[(
τ̂(a, b)− τ(a, b)

)2] ≤ 16k2y ē
2−2/p
ab + 4k2ykπ/π̄abN + 4k2ykπDab(1− 1/p− 1/q),

where π̄ab is the minimum of the corresponding quantity for the designs of Sa and Sb, and

ēab and Dab(1− 1/p− 1/q) are the corresponding maximums.

The corollary follows directly from Proposition 1 because it provides control over the

constitute terms. In particular, use Young’s inequality for products to write the square

estimation error as

E
[(
τ̂(a, b)− τ(a, b)

)2]
= E

[(
(µ̂a−µa)− (µ̂b−µb)

)2] ≤ 2 E
[
(µ̂a−µa)2

]
+ 2 E

[
(µ̂b−µb)2

]
,

where µz and µ̂z are the terms of the estimand and estimator, respectively. The difference

compared to the sampling setting is that there are two designs here, and the mean squared

error is governed by the design of the least favorable treatment group. The intuition is

otherwise unchanged, and the analog of Corollary 1 applies.

3 Concluding remarks

3.1 Previous results

To the best of our knowledge, Robinson (1982) provides the most comprehensive concen-

tration results for the Horvitz–Thompson estimator. He proves consistency under two dif-

ferent sets of conditions. The first proof requires that the variables of interest are bounded
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throughout the imagined asymptotic sequence. The rate of convergence is governed by the

average of the reciprocal of the units’ first order inclusion probabilities and the average of

the difference between second and first order probabilities. The second proof requires only

that the second population moment of the variables of interest is bounded, but the rate of

convergence is now governed by the minimum and maximum of the quantities that were

averaged in the first proof. It is in this case necessary for the minimum first order inclusion

probability to be of the same order as the average inclusion probability. In both proofs,

the sample size is assumed to be of fixed, so |S| = π̄N with probability one.

The two settings studied by Robinson are important, but they may be too restrictive

for some investigations. On the one hand, the requirement of bounded variables of interest

in the first proof is a poor approximation in studies of characteristics with heavy-tailed

distributions, such as wealth or income. On the other hand, the restriction on the inclusion

probabilities in the second proof is a poor approximation in studies with skewed designs.

As we discuss in the following section, this is a particular concern when drawing causal

inferences because naturally occurring designs tend to disproportionately favor some units

for certain treatments.

The concentration result presented here addresses these concerns by considering consis-

tency of the Horvitz–Thompson estimator under more general conditions. Our result can

be seen as a generalization of the two results in Robinson (1982). In particular, Robinson’s

results can be reproduced, in spirit, as special cases of Proposition 1. The condition in

Robinson’s first proof corresponds to Condition 1 when we let p → ∞, so the moment is

the uniform norm of the variables of interest. This allows q → 1 as in Robinson’s first proof.

Robinson’s second proof corresponds to Condition 1 when one lets q → ∞, which allows

p→ 2. Proposition 1 demonstrates that the estimator is consistent also in the intermediate

cases, where neither quantity is bounded, as long as the trade-off described in Condition 1

is respected.

The results in Robinson (1982) have been extended in various other directions before

us. Robinson & Särndal (1983) use techniques similar to Robinson’s second proof to prove
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consistency for a larger class of design-based estimators. Opsomer & Breidt (2000), Breidt

& Opsomer (2008) and Cardot et al. (2010) further build on this work.

In this strand of the literature, Chauvet (2014) provides the most recent concentration

results for the Horvitz–Thompson estimator. His initial conditions are similar to the ones

in the papers just mentioned, requiring that π̃i is uniformly bounded away from zero and

that |π̃i|j − π̃i| uniformly diminishes at a faster rate than 1/N . Chauvet continues by

showing that the second condition can be relaxed if the variables of interest are known to

be non-negative.

The approach used by Isaki & Fuller (1982) differs from both approaches in Robinson

(1982). Similar to this note, they use Hölder’s inequality, which avoids the two extremes

Robinson considers. However, unlike Robinson and this note, Isaki & Fuller impose a

composite condition on the design and variables of interest together, which may be hard

to reason about. From this perspective, our contribution can be seen as merging these

different approaches, taking advantage of the benefits each has to offer.

3.2 Practical implications1

In light of the previous literature, the results in this note are relevant primarily in settings

that are ill-behaved in some way. As mentioned above, this could be when the distribution

of the variable of interest is heavy-tailed or when the design is skewed. Practitioners should,

if possible, avoid such extreme settings. This is because the estimator may be inefficient

compared to a more well-behaved setting, even if it is still consistent. Practitioners will

therefore find our results most helpful when an ill-behaved setting cannot be avoided, and

in particular when they have limited control over the design.

One such setting is when the design includes trade-offs between statistical and practical

concerns. For example, the United States Census Bureau conducts the American Commu-

nity Survey on a monthly basis to complement its decennial census. Unlike the census, the

survey excludes some rural areas in Alaska from the sampling frame because they are too
1We thank an anonymous reviewer for suggesting the inclusion of this section.
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difficult to access (Torrieri, 2014, Section 4.8). Other areas are excluded for only part of the

year. These communities are in the population of interest, but they have disproportionately

low, or no, probability of being sampled.

Another example is a study by Niccolai et al. (2010) who sought to estimate the HIV

incidence among injection drug users in St. Petersburg, Russia. The authors could not

freely select the inclusion probabilities in this setting. One reason, among others, is that

a non-negligible portion of the population was homeless, without a reliable way to contact

them. To reach as many people as possible, the authors used a respondent driven sampling

design where drug users already sampled were asked to recruit other drug users to the

study. A consequence of this procedure was that well-connected drug users were more

likely to be sampled than isolated users. Indeed, a drug user who did not know any other

drug users was only observed when included in the initial sample, which was very small

because of the cost of its construction.

These concerns are common also in causal inference. Unlike the sampling setting, the

assignment of treatments can have life-changing consequences for the participants. Ethical

considerations are therefore a common component in experimental design. For example,

Harvey et al. (2005) studies the effect of pulmonary artery catheters on critically ill patients.

This type of catheter is a monitoring device of heart function that gets physically inserted

into the pulmonary artery. It provides valuable information to the patient’s physicians,

but the insertion can lead to serious complications, including the death of the patient.

Statistical efficiency may suggest to uniformly randomize among the patients, but such a

design could have grave consequences. Instead, to minimize the number of complications,

the design used in the study conditioned the randomization on physicians’ assessments of

the risk for the patient. As a consequence, patients with a high risk of complications had

a low, or no, chance of being assigned to get a catheter inserted. The design is, thus,

skewed with respect to the full population, and the authors chose to instead focus on a

subpopulation for which the design was uniform.

The problem of skewed designs is particularly common in field experiments. Rather
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than being confined to a lab, field experiments are conducted in real-world settings, allowing

practitioners to study the effect of various treatment in their natural environment. The

field setting, however, makes the implementation strenuous and costly, and it is common

to embed these experiments in the normal operations of companies, governments or other

organizations. This means that the partner organization often has the final say about

the design, and these organizations tend to give little weight to statistical efficiency. An

example is the study by Karlan & Zinman (2009) of the effect of access to consumer credit.

The authors partnered with a company offering micro-credit loans in South Africa. They

convinced the company to introduce a random component in their credit scoring model,

making a customer applying for a loan more or less likely to be approved. The company

was, however, not prepared to forgo good customers, nor did they want to give loans to

people who were likely to default on their payments. The randomness thus mainly affected

the chance of approval for “marginal” customers: those that was just below or above the

required credit score. As a consequence, the only design the company would accept was one

that gave a very high probability of approval to good customers and very low probability to

poor customers. As in the previous example, the design is skewed with respect to the full

population, and as before, the authors chose to restrict their focus to the subpopulation of

marginal customers.

The problem is taken to its extreme in natural experiments. For this type of experi-

ment, practitioners take advantage of some naturally occurring phenomena which assign

treatments at random, so they have no influence over the design. One such example is a

study by Shayo & Zussman (2011). The authors investigate ingroup bias in Israeli small

claims courts. They take advantage of the fact that judges are assigned at random to cases

in these courts. This introduces random variation in whether a case is assigned an Arab

or Jewish judge. Unintentionally, the arrangement creates a randomized experiment which

can be used to estimate the causal effect of a defendant being assigned to an ingroup versus

outgroup judge, effectively measuring the ingroup bias. While the assignment is random,

the design is skewed because some courts are ethically homogeneous.
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The results in this note are of interest to studies of the types discussed in this section.

Of particular interest is the close connection between the main conditions for consistency

as captured in Conditions 1 and 2. This connection shows that if the variables of interest

is known to be well-behaved, perhaps uniformly bounded, then practitioners have more

leeway in the design of the survey or experiment, allowing them to give more attention to

other important considerations. When practitioners have no control over the design, the

results illuminate which naturally occurring designs can be used for inference.
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A Consistency of other design-based estimators

The Horvitz–Thompson estimator tends to perform poorly in small samples, and practi-

tioners generally benefit from using one of its many improvements. We focused on the

original estimator in this note because the improved estimators often inherit its asymptotic

properties. We here illustrate this by demonstrating that Proposition 1 implies consistency

of two of these improvements.

The first is the estimator introduced by Hájek (1971):

µ̂há =
∑
i∈S

yi
πi

/∑
i∈S

1

πi
,

and µ̂há = 0 if S is empty. This estimator adjusts for the average reciprocal of the inclusion

probabilities. If the probabilities vary between the units or the sample size is random, this

adjustment tends to stabilize the estimator.
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Proposition A1. The Hájek estimator is consistent for the population mean if Condi-

tions 1 and 2 hold and ē→ 0 and π̄N →∞.

Proof. Let h = N−1
∑

i∈S π
−1
i , and note that µ̂há = µ̂/h. Corollary 1 provides convergence

of µ̂ to µ under the stated conditions. Observe that h is the Horvitz–Thompson estimator

for a population in which yi = 1 for all units. Corollary 1 thus provides convergence of h

to 1. The continuous mapping theorem completes the proof.

The second estimator is the difference estimator by Cassel et al. (1976):

µ̂de =
1

N

N∑
i=1

ŷi +
1

N

∑
i∈S

yi − ŷi
πi

,

where ŷi is a non-random prediction of yi.

The difference estimator takes advantage of auxiliary information about the responses

in the population. In particular, if the auxiliary information provides predictions of the

responses, our inferences could be improved because we can use the predictions to impute

responses we do not observe. In fact, if the predictions are sufficiently good, their average

alone will be a reasonable estimate of the population mean. This is the first term of the

difference estimator.

The concern with this estimate is that it will be inaccurate if the predictions are poor.

We can assess the quality of the predictions by comparing them to the responses in the sam-

ple. In fact, we can estimate the systematic prediction error using the Horvitz–Thompson

estimator. This is the second term. If we detect a systematic prediction error, we want

to adjust the first term by subtracting the estimated error, and this yields the difference

estimator.

The estimator allows us to change Condition 1 to one that generally is weaker.

Condition A1. There exist p > 2 and q > 1 with pq ≥ p+ 2q such that[
1

N

N∑
i=1

|yi − ŷi|p
]1/p
≤ ky, and

[
1

N

N∑
i=1

w̃qi

]1/q
≤ kπ.
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Proposition A2. The difference estimator is consistent for the population mean if Con-

ditions A1 and 2 hold and ē→ 0 and π̄N →∞.

Proof. Let mi = ŷi − yi, and note that mi is observed when i is in S. Let

m =
1

N

N∑
i=1

mi and m̂ =
1

N

∑
i∈S

mi

πi
,

so µ̂de = µ + m − m̂. Note that m̂ is the Horvitz–Thompson estimator of m, so m̂ → m

under the stated conditions.
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