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Abstract

Exposure mappings facilitate investigations of complex causal effects when units in-
terfere in experiments. Current methods assume that the exposures are correctly
specified. The assumption can, however, not be verified, and it is questionable in
many settings. This paper investigates whether inferences about exposure effects can
be drawn when the exposures are misspecified. The main result is a law of large
numbers under weak conditions on the errors introduced by the misspecification. In
particular, the rate of convergence is determined by the dependence between units’
specification errors, and consistency is achieved even when the errors are large as
long as they are sufficiently independent. The limiting distribution of the estimator
is also discussed. Asymptotic normality is achieved under stronger conditions than
those needed for consistency. Similar conditions also facilitate conservative variance
estimation.
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1 Introduction

Investigators face two challenges when drawing causal inferences in the presence of inter-

ference. The first is definitional. Conventional treatment effects are not well-defined when

units interfere, and the effects would in any case not capture causal aspects of the inter-

ference itself. The second challenge is inferential. Conventional estimators may be not be

applicable, or they may not perform well. A common solution to both challenges is the

introduction of exposure mappings.

An exposure mapping provides a terse representation of the nominal treatments assigned

to the units in the sample. The exposures are defined to capture aspects of the treatment

assignment deemed relevant or interesting for the question at hand. However, the way the

exposures are later used requires that they also capture all structural causal information in

the study. That is, the exposures are assumed to be correctly specified. The assumption is

useful because it allows investigators to use standard causal inference techniques under no

interference. The downside is that detailed knowledge of the structure of the interference is

required to make the specification correct. We must for example know (or presume to know)

whether the treatment assigned to one unit has the potential to affect the outcome of any

other unit in the sample. Such insights are rare, and investigators have been forced to make

unverified and often questionable assumptions to draw causal inference under interference.

This paper considers inference about exposure effects when the exposures are misspec-

ified. It first provides a definition of an exposure effect that is robust to misspecification.

The effect is defined as the average difference in expected outcomes for the two exposures

under consideration. The definition has the advantage that it coincides with the conven-

tional exposure effect when the exposures are correctly specified but remains well-defined

when the exposures are misspecified.

The paper next considers whether inferences can be drawn about these misspecification-

robust exposure effects. The focus is on conventional estimators of exposure effects. The

main contribution is to show that the estimators are consistent for the misspecification-

robust exposure effects given weak conditions on the specification errors. The critical
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condition is that the dependence between unit’s specification errors is sufficiently controlled.

Like the assumptions currently used to investigate exposure effects, the weak dependence

assumption is generally not testable. Its strength is instead that it is considerably weaker

than prevailing assumptions. Assuming the exposures are correctly specified is equivalent

to assuming that the specification errors are uniformly zero. A weak dependence allows for

potentially grave misspecification as long as the units’ exposures are not misspecified in the

same way. The final contribution is a discussion about variance estimation. The tasks are

less tractable than point estimation, but conditions allowing some progress are discussed.

2 Related work

The first glimpse of the idea of exposure mappings can be seen in Halloran & Struchiner

(1995) who discuss causal inference under interference and provide some foundational def-

initions. This initial work was later extended by Sobel (2006) and Hudgens & Halloran

(2008) who consider effects that we today would recognize as exposure effects. The authors

consider exposures based on proportions of treated units in neighborhoods. They ask what

the effect is when, say, 25% of a unit’s neighbors are treated versus when 75% are treated.

Two assumptions are used: partial interference and stratified interference. The first stip-

ulates that only the treatment assignments of units in a unit’s neighborhood (defined as

disjoint groups) affect the unit’s outcome. The second assumption stipulates that only

the proportion of treated units affects the outcome. Taken together, the two assumptions

amount to assuming that the neighborhood proportion of treated units together with a

unit’s own treatment assignment is a complete description of the causal structure, or in

other words, that the specification the authors use is correct.

The results were later extended to other settings. For example, Toulis & Kao (2013)

consider when interference is restricted to neighborhoods in known social networks, which

may not be disjoint. The idea was finally taken to full generality by Manski (2013) and

Aronow & Samii (2017). The authors point out that key methodological tool in all these

approaches is a terse description of treatment assignment. The insight suggests a general-
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ization of the approach to any setting where summaries of treatment assignments are the

interest. In more detail, the authors consider a function that maps from the full set of

treatments to some low-dimensional representation thereof. The elements of the codomain

of this function are given labels, and contrasts between outcomes under different labels

are interpreted as causal effects. Manski (2013) calls these labels “effective treatments,”

and Aronow & Samii (2017) call them “exposures.” The latter term has become standard

and will be used here. Independently of the terminology, both sets of authors impose the

assumption that the exposures are correctly specified. That is, they assume that the ex-

posures provide a complete description of the causal structure. Inference can then proceed

as usual but with the exposures substituted for the nominal treatments.

The assumption that the exposures are correctly specified is critical to prove the theo-

retical results in Manski (2013) and Aronow & Samii (2017). The assumption has a direct

parallel to the no-interference assumption often used to facilitate inference about average

treatment effects. That is, the average effect of the units’ own treatment on their own

outcome. This may be seen an exposure effect based on a particularly simple exposure

mapping with two level only depending on a unit’s own treatment assignment. The ne-

cessity of the no-interference in this setting has recently been investigated by Sävje et al.

(2018) and Chin (2018). The authors, respectively, provide a law of large number and a

central limit theorem for marginal direct treatment effects under completely unmodeled

interference. In other words, they show that inferences can be drawn about average treat-

ment effects even if the units’ treatments are misspecified. These results are the inspiration

of the ones presented here. The paper essentially connects these ideas with the literature

discussed above, generalizing the results to exposure mappings of arbitrary complexity.

The proof strategies are, however, quite different, which provides additional insights.

Discussions about misspecification under interference are rare, but they are not limited

to the two aforementioned contributions. One strand builds on Fisher (1935). The idea is

that randomization tests can be constructed without the need for correctly specified expo-

sures as long as the tested hypotheses is sufficiently precise (Aronow, 2012; Bowers et al.,
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2013; Athey et al., 2018; Basse et al., 2018). The approach requires that the response of

a subset of units are perfectly known under the null hypothesis for all possible treatment

assignments for some subset of assignments. Rosenbaum (2007) uses similar ideas to show

that certain test statistics can be inverted to form an estimate of the shift in the ranks of

the outcomes for treated units relative to controls without any restrictions on the interfer-

ence. Choi (2017) extends the approach to estimate the size, rather than rank shifts, of

attributable effects of treatment under the assumption of non-negative effects.

The Fisherian approach does not easily accommodate estimation of exposure effects.

Closer to the current investigation is a set contributions using more conventional estimation

approaches. Eckles et al. (2017) discuss strategies to minimize bias introduced by violations

to no-interference assumptions. Basse & Airoldi (2018) and Karwa & Airoldi (2018) provide

impossibility results for inference about causal quantities when no assumptions are made

about the interference structure. Egami (2018) studies estimation of spillover effects in

partially unobserved interference networks, which is a way to formalize misspecification.

3 Misspecified exposures

3.1 Preliminaries

Consider a sample of n units indexed by U = {1, 2, . . . , n} and a set of treatments indexed

by Z ⊆ N. Each unit is assigned one of the treatments: zi ∈ Z. The assignments of all

units are collected in z = (z1, . . . , zn) ∈ Ω = Zn. Binary treatments are often used, in

which case Ω = {0, 1}n, but the current discussion applies more generally.

Let the function yi : Ω → R map to the observed outcome for unit i under a specific

(potentially counterfactual) assignment of treatments (Neyman, 1923; Holland, 1986). That

is, yi(z) is the response of i when the treatments are assigned as z. The elements of the

image of the function are potential outcomes. The potential outcomes are assumed to

be well-defined throughout the paper. This requires that no hidden versions exist of the

treatments in Ω and that the outcomes are not inherently random. Finally, the potential
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outcomes are also assumed to be bounded. Boundedness is unnecessarily strong, but it

eases the exposition. Lemma A3 in the appendix provides details on how it can be weaken.

Condition 1 (Bounded potential outcomes). For some k1 < ∞ and all i ∈ U and z ∈ Ω,

|yi(z)| ≤ k1.

The treatments to assign are selected at random according to some probability space.

Let Z be a random variable denoting which treatment vector was randomly selected. The

distribution of Z will be referred to as the assignment mechanism or the design of the

study. The design is the sole source of randomness under consideration, and the sample

of units is considered fixed. The observed outcome Yi for unit i is defined as the potential

outcome corresponding to the randomly selected intervention: Yi = yi(Z).

3.2 Exposures

The potential outcomes contain all causal information about the sample, and any causal

quantity of interest can be expressed solely based on them. Definitions of such causal

quantities may, however, be complex, and it is often hard to formulate and interpret them.

Exposures and exposure mappings are used to make the definitions more intuitive.

The idea is that sets of treatments, i.e., subsets of Ω, often share similar causal inter-

pretations. The exposure mappings are used to encode this information. Two treatment

vectors are mapped to the same exposure if they are deemed similar. The exposures are,

in other words, labels on groups of treatments that share the same or a similar causal in-

terpretation. For example, if a vaccine is the focus of the study as in Hudgens & Halloran

(2008), one exposure could be that 75% of a unit’s neighbors are vaccinated. Another

exposure could be that only a 25% are vaccinated.

To state this formally, consider a set of exposure labels indexed by ∆ ⊆ N. A function

di : Ω → ∆ exists for each unit that maps from all possible assignments to the exposures.

That is, the exposure of unit i is di(z) when the treatments are assigned according to z. If

di(z) = di(z
′), then z has a similar causal interpretation as z′ with respect to unit i. In the
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example above, z and z′ could be similar in that 25% of unit i’s neighbors are vaccinated

in both, but they might differ in which quarter is vaccinated. The realized exposure is a

random variable because the treatments are randomly assigned. Let Di = di(Z) denote the

realized exposure for unit i, and let πi(d) = Pr(Di = d) be its marginal distribution. A

positivity assumption will initially be made on the distribution of Di. This is later relaxed

in Section 5.2.

Condition 2. An exposure d ∈ ∆ satisfies positivity if 1/πi(d) ≤ k2 for some k2 <∞ and

all i ∈ U .

3.3 Conventional exposure effects

To facilitate a simple definition of exposure effects, the exposures are conventionally as-

sumed to be correctly specified. That is to say that di(z) = di(z
′) implies yi(z) = yi(z

′) for

all units and treatment assignments. Manski (2013) calls the assumption “constant treat-

ment response,” and Aronow & Samii (2017) call it “properly specified exposure mappings.”

Correctly specified exposure mappings implies that each exposure corresponds to a

unique and well-defined potential outcome for every unit. Under the assumption, a function

ỹi : ∆→ R exists for each unit such that ỹi(di(z)) = yi(z) for all z ∈ Ω. In other words, the

exposures are assumed to accurately capture the causal structure in a sample. Since the

full treatment vector provides no causal information in addition to what a unit’s exposure

already provides, we can use ỹi defined on ∆ rather than the more cumbersome potential

outcomes defined on the full Ω. The reduction in complexity can be considerable since |Ω|

grows exponentially in n while |∆| typically is fixed.

Causal effects can then be defined in the usual manner as contrasts between potential

outcomes produced by the exposures. For example, the average causal effect of exposure

a ∈ ∆ relative to b ∈ ∆ is:

τ̃(a, b) =
1

n

n∑
i=1

[
ỹi(a)− ỹi(b)

]
.
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The interpretation of these effects is often straightforward because the exposures are chosen

to have a natural causal interpretation.

3.4 Exposure effects under misspecification

The exposures are assumed to be correctly specified because the construction of ỹi requires

it. In particular, no function ỹi : ∆→ R exists under misspecification such that ỹi(di(z)) =

yi(z) for all z ∈ Ω. Without such functions, the conventional exposure effect becomes

ill-defined. A solution must provide analogues of exposure-based potential outcomes that

remain well-defined even when the exposures are misspecified.

Let ȳi : ∆→ R be a function such that ȳi(d) = E[yi(Z) |Di = d] where the expectation

is taken over the design. The interpretation remains essentially the same as for ỹi. The

function captures the expected potential outcome under each exposure for each unit, so

ȳi(d) is the potential outcome we expect to be realized when unit i is assigned to exposure

d. A definition of an exposure effect under misspecification is immediate.

Definition 1. The misspecification-robust exposure effect for exposures a and b is:

τ(a, b) =
1

n

n∑
i=1

[
ȳi(a)− ȳi(b)

]
.

Effects building on this idea has been discussed before in the literature. The earliest

examples are the effects introduced by Hudgens & Halloran (2008). The authors derive

their main results assuming that the exposures are correctly specified (i.e., under partial

and stratified interference). They do, however, define the effect assuming only partial

interference, which implicitly allows from some misspecification. The way they proceed is

exactly as in Definition 1: they marginalize over all assignments that map to the same

exposure.

The misspecification-robust exposure effect is also related to a discussion in Aronow &

Samii (2017, Section 8). The authors derive the expectation of their estimator when their

assumption that the exposures are correctly specified is relaxed. They show the expectation
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is a particular weighted average of the potential outcomes defined on the full treatment

vector, and this weighted average can be shown to coincide with Definition 1.

A more distant parallel can be draw with causal effects in the absence of interference.

It used to be convention to assume that the causal effect of the units’ treatment on their

own outcome was the same for all units. Constant effects allowed focus to be directed

towards a single well-defined causal parameter applicable to each unit under study. In this

framework, if the effects were suspected to differ between the units, a model was made of

the heterogeneity, and the model was assumed to be correctly specified. Investigators grew

skeptical of these approaches because of the strong assumptions they involved, and focus

shifted to unconditional or conditional average causal effects. These definitions do not

presume that the effects are constant or can be captured by a model. Instead, the effects

marginalize of any heterogeneity that may exist. If effect heterogeneity is the interest, the

inferential targets are defined to be average effect for different types of units. This captures

aspects of the heterogeneity of interest while marginalizing over all irrelevant aspects of

the heterogeneity, bypassing the need to assume that the heterogeneity is perfectly mod-

elled. Such heterogeneity-robust causal effects are analogous to the misspecification-robust

exposure effects defined above.

3.5 Specification errors

Misspecification introduces specification errors. The errors can be formalized as differences

between the actual outcomes and the outcomes predicted by the exposures. Or, equiva-

lently, as differences between the potential outcomes based on the full treatment vector

and the potential outcomes based on the exposures.

Definition 2 (Specification error). εi = Yi − ȳi(Di).

Assuming that the exposures are correctly specified is the same as assuming that the

specification errors are zero with probability one. This insight suggests a way to weaken

the assumption. Rather than assuming that the specification errors are zero, it may be
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sufficient to ensure that the errors are sufficiently controlled. This is the idea explored in

this paper.

The pair-wise dependence between errors is the critical factor to control. In particular,

consistent estimation is possible if the dependence averaged over all pairs of units diminishes

as the sample grows. The relevant pair-wise dependence is captured by E[εiεj |Di, Dj]. This

quantity may, however, not provide much intuition about the sources of the dependence.

The dependence between errors comes from two sources. The first is the conditioning

event itself, capturing the fact that knowledge about j’s exposure may provide information

about i’s outcome when the exposures are misspecified, and conversely with i’s exposure

and j’s outcome. An example of this is when unit j interferes with unit i in a way that

is not captured in i’s exposure The second source is dependence in excess of what can

be explained by the conditioning event. This capture the fact two units’ errors can be

dependent if misspecified in the same way even if exposures provide no information.

A better understanding about the two parts may be gained when we note that the

specification errors are to some degree in our control because we decide how to define

the exposures. Consider the case above when j’s exposure provide information about i’s

outcome in excess of the information provided by its own exposure. A simple way to

eliminate this misspecification error is to redefine i’s exposure to include also the exposure

of j. If i’s redefined exposure is (Di, Dj), no part of i’s specification error can be explained

by j’s exposure. The idea of redefined exposures is straightforward, but its application is

not. If applied to all units in the sample, the redefined exposure will be the interaction

of all units’ nominal exposures, and much of the reduction in complexity is lost. The idea

does, however, suggest a decomposition of the specification error that will prove useful.

Let ȳij : ∆ × ∆ → R be a function such that ȳij(d, q) = E[yi(Z) | Di = d,Dj = q].1

That is, ȳij(d, q) is the potential outcome of unit i when defined over the exposures for

both i and j. The potential outcome based on the redefined exposures will be a more ac-
1The function may not be unambiguously defined if Di = d and Dj = q is a measure zero event. The

concern is valid but technical, so it is ignored for the moment. See Section A in the appendix for rigorous

definitions.
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curate representation of unit i’s outcome than the potential outcome based on the nominal

exposures because the former includes more information about the treatment vector. The

difference between ȳij(d, q) and ȳi(d), thus, captures the part of the specification error for

unit i explainable by j’s exposure.

Definition 3 (Explainable specification error). eij(d, q) = ȳij(d, q)− ȳi(d).

While ȳij(d, q) is more accurate than ȳi(d), it will generally not be correctly specified.

The remaining error is the part that cannot be explained by j’s exposure. This part is

strictly speaking not unexplainable because the full treatment vector will always perfectly

explain the potential outcomes in current setting, but it is unexplainable with respect to

pairwise refinements of the exposures. Similar to Definition 2, the error not explainable by

j’s exposure is the difference between the actual outcome and the outcome predicted by

the redefined exposures.

Definition 4 (Unexplainable specification error). uij = Yi − ȳij(Di, Dj).

The overall specification error can now be decomposed using the explainable and un-

explainable specification error. We have, in particular, εi = eij + uij for any pair of units

i and j, where eij = eij(Di, Dj) is the realized explainable specification error. The rele-

vant quantities for the proposition soon to be presented is based on the components of the

decomposed error.

Definition 5. The average explainable error dependence for exposure d ∈ ∆ is:

Ed =
1

n2

n∑
i=1

∑
j 6=i

eij(d, d)eji(d, d),

and the average unexplainable error dependence for the same exposure is:

Ud =
1

n2

n∑
i=1

∑
j 6=i

Cov(uij, uji |Di = Dj = d).

Definition 5 captures pair-wise dependencies between errors of units. As implied by the

discussion above, if eij(d, d) = 0, the knowledge that Dj = d provides no insights about
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Yi in excess to the knowledge that Di = d. Thus, eij(d, d)eji(d, d) is non-zero only when

the exposures of i and j both provide information about the other unit’s outcome. The

magnitude of the explainable errors matters only insofar that the dependence of the errors

ensure that they are of a large magnitude simultaneously. Consider a vaccination trial

as an example. Unit j in this trial is an asymptomatic (immune) potential carrier of the

disease under study, while unit i will show symptoms, which are the outcomes of interest,

when infected. The exposure assigned to j may provide information about i’s outcome

not contained in i’s exposure in this case, because it may provide additional information

about whether unit i is infected. Part of i’s error is thus explainable by j’s exposure, and

eij(d, d) is non-zero. However, i’s exposure contains no information about j’s symptoms,

so eji(d, d) = 0. The lack of symmetry means that there is no dependence, according to

this measure, between the errors.

Investigators may suspect that the explainable parts of the errors are fairly symmetric

in many application. If they are perfectly symmetric so that eij(d, d) = eji(d, d) for all

units, Ed would collapse to a measure of magnitude. The point here is that perfectly

symmetry is needed for this results. The definition makes clear that either low magnitude

or asymmetry in the errors are sufficient. The insight is perhaps made clearer with the

following inequality:

Ed ≤
1

n2

n∑
i=1

n∑
j=1

[eij(d, d)]2.

In fact, Ed will be small, or even negative, if the pair-wise explainable errors tend to have

different signs.

Turning now to the unexplainable error. The fact that Ud captures dependence is im-

mediate by the use of a covariance in its definition. To build intuition, consider the vaccine

trial again. Consider when the exposure of a unit is defined to capture the nominal treat-

ments assigned to units close, in some sense, to the unit in question (e.g., in their household,

or in a neighbor in a social network). For illustration, assume that the experiment is so all

encompassing in the studied community so the vaccinations have the potential to induce

herd immunity. The exposures of any pair of units will in this case provide little informa-
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tion about whether treatment assignment seen as a whole has induced herd immunity. If

there is variation in whether head immunity is induced over the assignment mechanism,

units’ errors will exhibit great dependence for certain exposures even in cases where the

explainable errors are small or zero, because pair-wise exposure cannot capture the global

behavior here. In particular, if two units are assigned to exposures under which they would

be infected by the disease without herd immunity, their errors would be highly dependent

because infected at the same time if and only if experiment does not induced herd immu-

nity. Generalizing from this example, the unexplainable error dependence captures whether

the exposures are misspecified in the same way.

4 Point estimation

Commonly-used estimators for exposure effects build on ideas originally introduced in the

survey sampling literature. Aronow & Samii (2017) focus on a version of the Horvitz-

Thompson estimator (Horvitz & Thompson, 1952). They also discuss extensions to the

Hájek estimator (Hájek, 1971) and various estimations facilitating covariate adjustments.

Karwa & Airoldi (2018) show that the Horvitz-Thompson estimator generally is inadmissi-

ble when exposures are correctly specified and provide a large set of alternative estimators

exploiting covariates and other auxiliary information.

The initial focus here is the Horvitz-Thompson estimator. Investigators will, however,

likely benefit from the usual refinements also when exposures are misspecified, and such

extensions are discussed in the following section.

Definition 6. The Horvitz-Thompson estimator for exposure effect τ(a, b) is:

τ̂(a, b) =
1

n

n∑
i=1

DiaYi
πi(a)

− 1

n

n∑
i=1

DibYi
πi(b)

,

where Did = 1[Di = d] is an indicator denoting whether unit i’s exposure is d ∈ ∆.

The use of the Horvitz-Thompson estimator in this context builds on the idea that

the observed potential outcomes can be seen as a sample from a finite population consist-
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ing of the potential outcomes of all units in the study. An assignment mechanism that

disproportionately assigns certain exposure will, seen through a survey sampling lens, be

oversampled, and must be given lower weight than other potential outcomes when observed.

For the Horvitz-Thompson estimator, these weights are the reciprocal of the probability of

observing the outcomes.

When exposures are correctly specified, each realized outcome is equal to the potential

outcome defined on the corresponding realized exposure. The positivity assumption stated

in Condition 2 thus ensures that the reweighed outcomes for each term will be equal to

the corresponding potential outcome in expectation. Under misspecification, the realized

outcomes will vary even if the realized exposure is fixed, so the same logic does not apply.

In expectation, each term gives a linear combination of all potential outcomes under the

same exposure label. Two insights about the estimator makes this linear combination

interpretable. First, πi(d) is fixed for all potential outcomes under the same exposure

label, so each coefficient in the linear combination is proportional to the probability that

the corresponding potential outcome is realized. Second, the expectation of Did is πi(d),

so the coefficients sum to one. The resulting convex combination is thus a conditional

expectation. More precisely, the combination is equal to ȳi(d) = E[yi(Z) |Di = d], and the

following result is immediate.

Proposition 1 (Unbiasedness). If Condition 2 holds for a and b, then: E[τ̂(a, b)] = τ(a, b).

The proposition is essentially a rephrasing of Proposition 8.1 in Aronow & Samii (2017).

The implications of the result are, however, clearer when connected with an explicit target

parameter as here. The proposition shows that the Horvitz-Thompson estimator is unbiased

for the misspecification-robust exposure effect no matter how severe the misspecification

is; no restrictions on the quantities in Definition 5 are needed. Of course, control over the

location of the sampling distribution is not enough for inference. It is, however, comforting

first step. The Horvitz-Thompson estimator is known for emphasizing unbiasedness at the

cost of mean square error, so if it was shown not to control the bias, we would suspect

behavior more generally also was poor.
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4.1 Controlling design dependence

Definition 5 provides control of the dependence introduced by the specification errors.

Another channel through which dependence can be introduced is the exposures themselves.

For example, if the exposures are defined as the proportion of treated unit in the whole

sample, it would follow that D1 = D2 = · · · = Dn, and the Horvitz-Thompson estimator

would exhibit considerable variation in large samples even if the exposures were correctly

specified. To proceed, we must control the dependence between the exposures introduced

by the design.

Definition 7. The average design dependence for exposure d ∈ ∆ is:

Cd =
1

n2

n∑
i=1

∑
i 6=j

∣∣Cov
(
Did, Djd

)∣∣.
The average design dependence captures how strong the dependence on average is be-

tween two units’ assigned exposures. It tells us how much information on average a unit’s

exposure provides about other units’ exposures. Contrast this with the error dependence

discussed in the previous section, which tells us how much information on average a unit’s

exposure provides about another unit’s error.

The definition may appear unfamiliar, but the concept is capture is not. It can be

seen a measure of effective sample size with respect to the assignment mechanism. If Cd

diminishes in n, the effective sample size grows with the nominal size. The definition has

a direct parallel in Aronow & Samii (2017) where Cd is, implicitly, defined as:

1

n2

n∑
i=1

∑
i 6=j

1
[
Did ⊥⊥ Djd

]
,

where 1[Did ⊥⊥ Djd] is an indicator taking the value one when Did and Djd are independent.

Clearly, this is a stronger dependence concept than the one captured by Definition 7.

It is rare that quantities like these are defined when interference is assumed to be absent.

Instead, particular designs, such as complete randomization, are directly considered. This

is generally not possible in our case because the complexity of the exposure mappings give
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rise to intricate distributions of the exposures even if the design on the nominal treatments

is simple.2 The example with D1 = · · · = Dn that opened this section is one such case.

Intuition can, however, be built about Cd by considering these conventional designs on

the exposures. If the exposure mappings were to induce a Bernoulli distribution on the

exposures, the covariances are zero, so Cd = 0. If instead a pair-matched design is induced

on the exposures, then Cd = n−1, and if a complete randomization design with πi(d) = 0.5

is induced, then Cd = 0.25n−1.

4.2 Variance bound

We now have the components needed to characterize the behavior of the estimator beyond

its expectation.

Proposition 2 (Bound on variance). If Conditions 1 and 2 hold for a and b, then:

Var
(
τ̂(a, b)

)
≤ 8k21k2n

−1 + 20k21k
2
2

[
Ca + Cb

]
+ 4
[
Ea + Eb + Ua + Ub

]
,

where Cd, Ed and Ud are given by Definitions 5 and 7.

The bound demonstrates that three aspects are relevant for the variance of the esti-

mator. The first term captures the variation induced by the fact that the exposures are

randomly assigned. That is, even when the exposures are independent and correctly speci-

fied, the estimator would still vary over assignments because different exposures (and thus

potential outcomes) are realized. The second term captures the variation induced by de-

pendence between exposures. That is, even when the exposures are correctly specified, the

estimator tends to vary more when exposures are highly dependent. In some cases, such

dependence can reduce the variance of the estimator, but that requires either additional

restrictions on the potential outcomes (e.g., that they have the same sign) or additional

restrictions on the design (e.g., that the number of units assigned to each exposure is fixed).
2The design and the exposure mappings are, however, known, so Cd can be calculated, although it

might not be straightforward to do so computationally.
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The final term in the bound captures variance stemming from misspecification. Recall

that Definition 5 captures the dependence between the explainable and unexplainable spec-

ification errors. If the specification errors are strongly positively correlated, the estimator

may be less stable. The bound makes clear that the magnitude of the specification errors

is less of a concern. Large specification errors will affect the variance, but their effect is

absorbed by the first term, so the large sample behavior is only affected by the dependence

captured in the third term.

4.3 Large sample behavior

4.3.1 Asymptotic regime

The asymptotic regime used for the large sample investigation considers a sequence of

fixed samples indexed by n. All quantities pertaining to the samples, such as the potential

outcomes and designs, will thus have their own sequence also indexed by n. The index is,

however, suppressed when no confusion ensues.

The regime differs from the conventional setup in that the sample is fixed and no pop-

ulation exists in the usual sense. The asymptotic properties discussed below are therefore

not with respect to some sampling distribution, but they apply uniformly to all sequences

of samples that satisfy the stated conditions. A consequence is that the samples need not

be related in any specific way, and no assumptions about iid sampling or other stabilizing

mechanisms are needed. This is particularly useful when interference is the focus, because

units tend to neither be independent nor identically distributed in such cases.

This type of regime has been used extensively in the literature on design-based sampling

(e.g., Isaki & Fuller, 1982). It has more recently seen increasing use in the design-based

causal inference literature (e.g., Freedman, 2008; Lin, 2013).

4.3.2 Limiting behavior

Because the estimator is unbiased, the bound on the variance directly describes the esti-

mator’s asymptotic behavior in the L2-norm. Control over the terms in the bound thus
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provides consistency through Markov’s inequality. The following two conditions provide

the control.

Condition 3. An exposure d ∈ ∆ satisfies limited design dependence if Cd = o(1).

Condition 4. An exposure d ∈ ∆ satisfies limited specification error dependence if Ed ≤ An

and Ud ≤ An for some sequence An = o(1).

Proposition 3 (Consistency). If Conditions 1 and 2 hold for a and b, then:

τ̂(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.

If Conditions 3 and 4 also hold, then: τ̂(a, b)− τ(a, b) = op(1).

The limiting distribution of the estimator is less tractable than its limit. A situation

where progress can be made is when the specification errors are very small relative to the

sample size. Recall Definition 2 and consider the following decomposition of the estimator:

τ̂(a, b) =

[
1

n

n∑
i=1

Diaȳi(a)

πi(a)
− 1

n

n∑
i=1

Dibȳi(b)

πi(b)

]
+

1

n

n∑
i=1

(Dia −Dib)εi
πi(Di)

.

The first term of the expression is the Horvitz-Thompson estimator if we could directly

observe the misspecification-robust potential outcomes defined in Section 3.4. This part

is, thus, unaffected by the misspecification, and any properties that would hold for the

estimator when exposures are correctly specified would also hold for this term. In particular,

if the rate of convergence of the second term is faster than the first, Slutsky’s theorem tells

us that the first term determines the limiting distribution. For example, if the estimator

is known to convergence to a normal distribution at a root-n rate under correctly specified

exposures, then a sufficient condition for the same to be true under misspecification is that

An = o(n−1) in Condition 4. The assumption is considerably stronger than Condition 4,

bordering to assuming correctly specified exposures. I conjecture that limiting distribution

can be characterized under considerably weaker conditions.

A last resort if no asymptotic approximation is available as a sound basis for hypothesis

testing and interval estimation is Chebyshev’s inequality. The inequality guarantees 95%
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coverage rates for confidence intervals constructed as 4.47 standard errors wide windows on

either side of the point estimate. Naturally, this interval estimator would be tremendously

conservative in most situations, and it still requires a reasonable variance estimator, but it

may be the only option in some settings.

5 Extensions

5.1 Improved estimators

As noted above, the Horvitz-Thompson estimator is rarely a good choice for actual empirical

work, but it provides theoretical insights that can be built on. This section provides results

for common refinements of the Horvitz-Thompson estimator.

The first refinement accounts for the realized number of units assigned to the exposures

of interest. The Hájek estimator (Hájek, 1971) does this by dividing each term in the

estimator with the sum of the reciprocals of the assignment probabilities for the units

assigned to the exposure, rather than dividing by n. The change can absorb some of the

variability in the estimator introduced by randomness in the number of units assigned to

each exposure. The ratio structure introduces bias, but it is generally small enough to still

grant improvements in mean square error. The denominator can generally be shown to be

well-behaved, so the estimator’s limited behavior can be linked to the Horvitz-Thompson

estimator through linearization.

Definition 8. The Hájek estimator for exposure effect τ(a, b) is:

τ̂há(a, b) =

(
n∑

i=1

DiaYi
πi(a)

/ n∑
i=1

Dia

πi(a)

)
−

(
n∑

i=1

DibYi
πi(b)

/ n∑
i=1

Dib

πi(b)

)
.

Proposition 4 (Consistency of the Hájek estimator). If Conditions 1, 2, 3 and 4 hold for

a and b, then τ̂há(a, b) is consistent for τ(a, b) and converges at the following rate:

τ̂há(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.
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Investigators commonly use estimators that do not explicitly adjust for the assignment

probabilities. One such example is the difference-in-means estimator. This estimator can

be shown to coincide with the Hájek estimator whenever the assignment probabilities are

the same for all units: πi(d) = πj(d) for all i, j ∈ U . Proposition 4 thus implies that the

difference-in-means estimator can be used in similar situation also under misspecification.

Investigators should, however, not blindly use the difference-in-means estimator for expo-

sure effects because the exposure mappings may not induce equal assignment probabilities

on the exposures even if they are equal for the nominal treatments. Another estimator

coinciding with the Hájek estimator is the ordinary least squares (ols) estimator. The

unweighted version requires equal assignment probabilities just like the difference-in-means

estimator, but a weighted ols estimator is equivalent to the Hájek estimator in the general

case.

A disadvantage of all estimators discussed so far is their inability to exploit auxiliary

information. A simple modification of the Horvitz-Thompson estimator allows us to in-

corporate such information. The idea is that information beside the observed potential

outcomes themselves might allow us to predict the potential outcomes we do not observe.

If this prediction is sufficiently good, the predicted outcomes can be used to offset chance

imbalances introduced by the randomization. Särndal et al. (1992) call it the difference

estimator in a sampling setting, and the name will be used here as well.

Definition 9. The difference estimator for exposure effect τ(a, b) is:

τ̂de(a, b) =
1

n

n∑
i=1

[
ŷi(a)− ŷi(b)

]
+

1

n

n∑
i=1

(Dia −Dib)
[
Yi − ŷi(Di)

]
πi(Di)

,

where ŷi(d) is a prediction of unit i’s potential outcome when assigned to d ∈ ∆.

The definition of the estimator reveals the idea that motivate its use. The first term is

simply the average difference in predicted potential outcomes. If the predictions are of high

quality, this term will be an accurate estimator of the exposure effect. The issue is that the

predictions may have systematic errors. The second term is included to ensure robustness.

If the predictions are of low quality, this term will compensate for the errors in the first
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term, and it ensures that the estimator performs well in expectation. The estimator bears

a resemblance in this regard to the class of doubly robust estimators used in observational

studies when the assignment mechanism is unknown (see, e.g., Robins & Rotnitzky, 2001).

The properties of the difference estimator depend on the way the predictions are con-

structed. In particular, the estimator can be shown to retain the advantageous properties

of the Horvitz-Thompson estimator if the predictions are external to the study. External

here means that they do not depend on the treatment assignment. As the only randomness

under consideration here stems from the assignment mechanism, independence between

ŷi(d) and Z implies that the predictions are non-random. The probability space can ex-

tended to accommodate random predictions if one wants to account for the consequences

of external variability. Such variability could affect the rate of convergence if units’ pre-

dictions are sufficiently dependent, but it is otherwise inconsequential to the results. The

results presented here presume that the predictions are fixed to ease exposition; random

predictions are considered in the appendix.

Proposition 5 (Unbiasedness of the difference estimator). If Condition 2 holds for a and

b, and the predictions are non-random, then: E[τ̂de(a, b)] = τ(a, b).

Proposition 6 (Consistency of the difference estimator). If Conditions 1, 2, 3 and 4 hold

for a and b, and the predictions are non-random, then τ̂de(a, b) is consistent for τ(a, b) and

converges at the following rate:

τ̂de(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.

The difference estimator seemingly provides advantages at no cost. Good predictions

of the potential outcomes confer improvements in finite samples, but the estimator has the

same robustness guarantees as the Horvitz-Thompson estimator both in finite and large

samples. The no-cost advantages are superficial. The mean square error may increase when

the predictions are poor, so investigators should use the difference estimator only when the

predictions are expected to be of reasonably high quality.

The quality of the predictions is, however, less of a concern than their construction.

Covariate information can be used to make the predictions, but the assigned exposures and
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the observed outcomes can generally not be used because it would induce dependence be-

tween the predictions and Z. More precisely, if xi denotes a vector of covariates describing

characteristics of unit i, we can form the predictions as ŷi(d) = f(d,xi) for some function f .

The function f can, however, not be constructed using (Y1, Y2, . . . , Yn) or (D1, D2, . . . , Dn).

This illustrates that the construction of f truly needs to be external to treatment assign-

ment when used for the predictions in the difference estimator. This severely limits its

applicability. Split-sample or leave-one-out approaches (see, e.g., Williams, 1961) that of-

ten are used to solve the issue cannot be used here because the misspecification may induce

dependence between subsamples that otherwise appear isolated.

An estimator facilitating dependence between the predictions of the potential outcomes

and the treatment assignments is inspired by the generalized regression estimator commonly

used in the sampling literature. The estimator has received recent attention in the causal

inference literature as well (see, e.g., Lin, 2013; Middleton, 2018).

The estimator uses a linear working model for the relationship between the potential

outcomes and the covariates. The working model is used to construct the predictions:

ŷi(d) = xiβ(d) for some vector of coefficients β(d) indexed by d ∈ ∆, so different coefficients

are used for different exposures. No assumptions are made about the validity of the model,

but the quality of the predictions are related to how well the model can approximate the

potential outcomes. It remains to pick the coefficients β(d). The generalized regression

estimator allows of dependence between the coefficients and the treatment assignments,

so the coefficients can be estimated in the sample. For example, we may pick them as

the minimizing solution to
∑n

i=1Did[Yi − xiβ(d)]2 as is often done in applications. But

other choices exist, and the estimator is largely agnostic about how the coefficients were

constructed.

Definition 10. The generalized regression estimator for exposure effect τ(a, b) is:

τ̂gr(a, b) =
1

n

n∑
i=1

xi

[
β̂(a)− β̂(b)

]
+

1

n

n∑
i=1

(Dia −Dib)
[
Yi − xiβ̂(Di)

]
πi(Di)

,

where β̂(a) and β̂(b) are two random vectors of the same dimensions as xi.
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The conventional approach to investigating the properties of the generalized regression

estimator is to assume that the vector of coefficients constructed in the sample convergences

to some fixed vector asymptotically. This ensures that the dependence between units’

predictions is small in large samples, which provides consistency. The assumption can

be weaken to only require that the length of the vector of coefficients is asymptotically

bounded, thereby bypassing the need of assuming a well-defined limit.

Proposition 7 (Consistency of the generalized regression estimator). Assume xi ∈ X for

some bounded X ⊂ Rp and E
[
‖β̂(d)‖

]
= O(1). If Conditions 1, 2, 3 and 4 hold for a and

b, then τ̂gr(a, b) is consistent for τ(a, b) and converges at the following rate:

τ̂gr(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.

5.2 Lack of positivity

Positivity conditions are often seen as innocuous in experiments because the investigator

controls the design and can ensure that it holds. This may not be the case when the

focus is effects of exposures. The exposure mappings are often complex, and it may not be

feasible to construct a design that would induce the desired distribution over the exposures.

Investigators will often settle for a heuristic choice, and this might induce violations of

Condition 2.

The positivity condition can fail in two ways. The first is when it is fundamental

impossible that a unit is assigned to a certain exposure. For example, a person living in

a single-person household cannot be assigned to the exposure that at least two household

members are vaccinated. This may be formalized such that no z ∈ Ω exists so that di(z) = d

for some d ∈ ∆. The consequences are more than just statistical. If it is nonsensical to talk

about a unit being assigned a certain exposure, it is nonsensical to consider exposure effects

that include the unit in its average. Unless the investigator is comfortable stipulating a

metaphysical model allowing extrapolation to unrealizable potential outcomes, the only

solution is to exclude such units from the average. The result may be that the number of
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units under study is fewer than the length of z, but this is not an issue. In the following

discussion, it will be assumed that such exclusions have been made if necessary. That is, if

the effect of exposures a and b is the focus, then {a, b} ⊆ {di(z) : z ∈ Ω} for all units.

The second way the positivity condition can fail is through the design. That is, assign-

ments z ∈ Ω exist so that di(z) = d, but the design is such that πi(d) = 0. Statistical issues

are the only sequelae in this case, which all have cures. Two situations must be considered.

The first is when the assignment probability for some exposure is exactly zero, πi(d) = 0.

The second is when the probability approaches zero asymptotically. Both are problematic,

but they have different solutions.

Superficially, the first situation appears most acute. The reciprocal of the assignment

probability is used in the Horvitz-Thompson estimator, and a probability that is exactly

zero would render the estimator ill-defined. A simple solution suggests itself once we realize

that the denominator is zero only when nominator is zero with probability one. Defining

0/0 as zero makes the estimator well-defined without positivity, and this is the approach

that will be taken here.

It remains to describe the behavior of the estimator. We must here consider both the

assignment probabilities that are exactly zero and those that approach zero. Consider the

following quantities:

S̄d =
1

n

n∑
i=1

Si(d), and Π(d, p) =

[
1

n

n∑
i=1

1− Si(d)

[πi(d)]p + Si(d)

]1/p
,

where Si(d) = 1[πi(d) = 0]. The first quantity counts the number of assignment probabili-

ties that are exactly equal to zero, and the second is proportional the pth moment of the

reciprocals of the remaining probabilities. The quantities allow us to weaken the positivity

assumption in a controllable way. In particular, Condition 2 is the same as S̄d = 0 and

Π(d, p) ≤ k <∞ as p→∞. The following proposition shows that neither part is necessary

for consistency. However, the weaken positivity condition comes at the cost of potentially

slower convergence rates. This is captured by a strengthening of the definition of the design
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dependence, namely:

Cd(s) =

[
1

n2

n∑
i=1

∑
j 6=i

∣∣Cov
(
Did, Djd

)∣∣s]1/s.
The extended definition collapses to Definition 7 when s = 1, but generally Cd = O

(
Cd(s)

)
when s > 1. Thus, Condition 3 using Cd(s) when s > 1 is stronger than the original

version. The additional machinery admits consistency without positivity. The following

proportion only considers the Horvitz-Thompson estimator, but a similar result should hold

the estimators in the previous section.

Proposition 8 (Consistency without positivity). Assume Π(d, p) ≤ k <∞ for d ∈ {a, b}

and some p > 2. Also assume S̄d = o(1) and Cd

(
p/(p − 2)

)
= o(1) for d ∈ {a, b}.

If Conditions 1 and 4 hold, then the Horvitz-Thompson estimator is consistent for the

misspecification-robust exposure effect and converges at the following rate:

τ̂(a, b)− τ(a, b) = Op

(
n−0.5 + S̄a + S̄b + C̃0.5

ap + C̃0.5
bp + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
,

where C̃dp is short-hand for Cd

(
p/(p− 2)

)
.

6 Variance estimation

6.1 Current results

Variance estimation for exposure effect estimators is challenging because the variance con-

sists of pair-wise products of potential outcomes, and some of theaw outcomes are not

observable simultaneously. The issue is not unique to exposure effects, but exposure map-

pings tend to induce complex distributions on the exposures, which tend to exacerbate the

issue.

The solution suggested by Aronow & Samii (2017) is to use Young’s inequality to bound

the unobservable parts of the variance expression, which gives the following estimator:
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V̂aras
(
τ̂(a, b)

)
=

1

n2

n∑
i=1

n∑
j=1

(Dia −Dib)(Dja −Djb)Pij(Di, Dj)YiYj

+
1

n2

n∑
i=1

n∑
j=1

[
Dia

πi(a)
+

Dib

πi(b)

][
Sij(Di, a) + Sij(Di, b)

]
Y 2
i ,

where:

Pij(d, q) =
πij(d, q)− πi(d)πj(q)

πij(d, q)πi(d)πj(q) + Sij(d, q)
, Sij(d, q) = 1[πij(d, q) = 0],

and πij(d, q) = Pr(Di = d,Dj = q) is the joint probability of unit i and j’s exposures. The

authors show that the estimator is conservative when exposures are correctly specified.

That is, they show that the estimator is greater or equal to true variance in expectation.

What does not appear to be fully appreciated in the literature is that this fix may make

the estimator excessively conservative. In fact, unless the assumption of correctly specified

exposures is complemented with:

n∑
i=1

∑
j 6=i

[
Sij(a, a) + Sij(b, b) + Sij(a, b)

]
= O(n),

the normalized variance nV̂aras
(
τ̂(a, b)

)
generally diverges to infinity. I will not offer a solu-

tion to this problem. The remark instead serves as an illustration of the difficulty of variance

estimation for complex exposure effects. In also provides insights about the mechanics of

the estimator, which will aid our understanding of its behavior under misspecification.

6.2 Variance estimation and misspecification

Variance estimation could for this reason be seen as an open question even when exposures

are correctly specified.

The same does not hold under misspecification.

Proposition 9 (Expectation of variance estimator). If Conditions 1 and 2 hold, then:

E
[
V̂aras

(
τ̂(a, b)

)]
= Var

(
τ̂(a, b)

)
+B1 +B2(a, b) +B2(b, a) +B3(a) +B3(b)
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+ 2B4(a, b)−B4(a, a)−B4(b, b),

where:

B1 =
1

n2

n∑
i=1

[
ȳi(a)− ȳi(b)

]2
,

B2(d, q) =
1

2n2

n∑
i=1

∑
j 6=i

(
Sij(d, d)

[
ȳi(d) + ȳj(d)

]2
+ Sij(d, q)

[
ȳi(d)− ȳj(q)

]2)
,

B3(d) =
1

n2

n∑
i=1

∑
j 6=i

[
Sij(d, a) + Sij(d, b)

]
Var(εi |Di = d),

B4(d, q) =
1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, q)

][
ȳi(d)eji(q, d) + ȳj(q)eij(d, q) + eij(d, q)eji(q, d)

+ Cov(uij, uji |Di = d,Dj = q)
]
.

The terms after the variance on the right hand side in the proposition captures factor

biasing the variance estimator. These biases help us understand when variance estimation

is possible under misspecification. The term B1 stems from what Holland (1986) describes

as the fundamental problem of causal inference, namely that a unit cannot simultaneously

be assign to two different treatments. The joint distribution of the potential outcomes

affects the variance, but the distribution can only be estimated if both potential outcomes

are observed simultaneously. This would, however, require simultaneous assignment of

two different treatments to the same unit. The first term captures the bias arising from

our inability to estimate this aspect of the potential outcomes. The issue is not unique

to variance estimation for exposure effects, and similar bias terms arise for most causal

inference problems in finite samples.

The distribution of the exposures may, as noted above, be complex, and the joint

exposure probabilities may be zero for a considerable number of pairs of units. The issue is

similar to the first source of bias, but it is now induced by the design. The bound used to

solve the issue introduces bias, and that bias is captured in the terms B2(a, b) and B2(b, a).

These biases arise also when the exposures are correctly specified.
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The remaining terms capture the bias stemming from misspecification; if the exposures

are correctly specified, these terms are zero. The bias comes from two sources. The first

arises from the use of Young’s inequality in the construction of the estimator. When a pair of

units cannot be assigned to a certain set of exposures simultaneously, their corresponding

specification errors cannot interact and do not affect the variance. However, these are

exactly the terms that need to be bounded to ensure conservativeness under correctly

specified exposures. The bound is on the observed outcomes, and this will include the

specification errors. The consequence is that the variance estimator is affected by the

magnitude of the corresponding errors. The terms B3(a) and B3(b) capture this part of the

bias. These terms are non-negative by construction, like the previous terms.

The terms of real concern are the last three: 2B4(a, b), B4(a, a), and B4(b, b). These

capture the bias introduced by our inability to estimate the dependence in the specifica-

tion errors. Unlike the previous terms, the signs of the terms are unknown, so they may

introduce negative bias. The consequence is that we may systematically underestimate

the variance when the specification errors are large, and our inferences would then be

anti-conservative.

The problem has no immediate solution, but some progress can be made. Similar to the

discussion in Section 4.3, if the specification errors can be assumed to be negligible relative

to the sample size, the terms given by B4(d, q) will be negligible relative to the other terms,

and the variance estimator is ensured to be conservative asymptotically.

An alternative approach is to incorporate more information about the structure of the

interference in the variance estimator. In particular, the anti-conservative behavior of

the estimator stems from negative interactions of errors in B4(d, q). One may remove such

interactions by setting Sij(d, q) = 1 for the corresponding pairs of units, even if πij(d, q) > 0

holds. This will move the corresponding terms from B4(d, q), where negative interactions

are possible, to B3(d), where no interactions exist. It may be hard to discern whether

the interaction between two specific units’ errors is negative or positive; a conservative

approach is to set Sij(d, q) = 1 for all pairs of units where an interaction of any type is
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suspected.

For example, if it is assumed that units only interfere with each other within known

disjoint groups (i.e., partial interference), one may set Sij(d, q) = 1 if either πij(d, q) is

zero or if unit i and j belong to the same group. A redefinition of Sij(d, q) along these

lines would ensure that B4(d, q) = 0, so the variance estimator remains conservative. Of

course, such knowledge about the interference would allow for the definition of exposure

mappings that are correctly specified, which would obviate all concerns about misspeci-

fication. Investigators could, however, be interested keeping the main exposure mapping

simple to facilitate interpretation. They can then proceed with misspecified exposures for

point estimation, and use the more intricate information about the interference structure

only when estimating variance.

A third approach is a combination of the previous two. One may set Sij(d, q) = 1 for

pairs of units where negative interactions are suspected to be particularly large. Unless

one presumes to have caught all interacting terms, one must entertain the possibility that

B4(d, q) is negative. However, setting Sij(d, q) = 1 for the terms deemed most problematic

may make the assumption that the remaining errors are small more reasonable. It should

also be noted that the other bias terms tend to be large and possible, and they generally

provide considerably leeway with respect control over B4(d, q).

The focus on the expectation of the variance estimator should be seen as an analogy for

its more general behavior. Specifically, the precision of the variance estimator will be poor

if joint exposure probabilities are small even if they are never exactly zero. Investigators

should be aware that the variance estimator may be very imprecise, and particularly when

the number of exposures is large. The concern is, however, not specific to misspecification.

Middleton (2018) introduces an improved version of the variance estimator that ad-

mits less conservative estimation in expectation under correctly specified exposures. The

improvement only requires information about the design, so it can be used also under

misspecification. Middleton’s approach is a way to mitigate the excessive conservativeness

discussed in the previous section. It will, however, not solve the issues discussed in this sec-
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tion. The estimation can also be improved if more is known about the potential outcomes

than what is stipulated by Condition 1. For example, if the potential outcomes are known

to have the same sign, so that either ȳi(d) ≥ 0 or ȳi(d) ≤ 0 for all units and exposures,

then the second term of the estimator can changed to:

1

n2

n∑
i=1

n∑
j=1

[
DiaSij(a, b)

πi(a)
+
DibSij(b, a)

πi(b)

]
Y 2
i ,

which admits a less conservative estimator when exposures are correctly specified. The

modification can also be used under misspecification, but concerns about interactions be-

tween errors must still be tended to.
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A Rigorous definitions of the potential outcome

Condition 2 ensure that ȳi is uniquely defined by ȳi(d) = E[yi(Z) |Di = d]. This no longer

holds when the condition is relaxed in Section 5.2. In particular, Di = d can then be a

null set for some i ∈ U , and the definition provided in the paper is ambiguous. The issue

was ignored in the main text to expedite the exposition, but it will be addressed here. In

particular, let the full definition be:

ȳi(d) =

 Avg
(
{yi(z) : z ∈ Ω and di(z) = d}

)
if πi(d) = 0,

E[yi(Z) |Di = d] else,

where Avg
(
A
)
gives the arithmetic mean of the elements in the set A.

A similar issue arises for the definition of ȳij in Section 3.5. In particular, the function

is not uniquely defined if πij(d, q) = 0 for some pairs of units. Therefore, consider the

following as the full definition:

ȳij(d, q) =

 ȳi(d) if πij(d, q) = 0,

E[yi(Z) |Di = d,Dj = q] else.

It follows that eij(d, q) = 0 when πij(d, q) = 0. This captures the intuition that learning

Dj = q provides no information about ȳi(d) when Di = d is not simultaneously possible

with Dj = q. Similarly, set Cov(uij, uji |Di = Dj = d) = 0 when πij(d, q) = 0.
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B Proofs

B.1 Miscellaneous lemmas

Lemma A1. For any N random variables X1, X2, . . . , XN defined on the same probability

space:

Var
(
X1 +X2 + · · ·+XN

)
≤
(√

Var(X1) +
√

Var(X2) + · · ·+
√

Var(XN)
)2
.

Proof. Write the variance of the sum as a double sum of covariances:

Var(X1 + · · ·+XN) =
N∑
i=1

N∑
j=1

Cov(Xi, Xj).

Separate the covariances using the Cauchy–Schwarz inequality and reorder the summation:

N∑
i=1

N∑
j=1

Cov(Xi, Xj) ≤
N∑
i=1

N∑
j=1

√
Var(Xi) Var(Xj) =

( N∑
i=1

√
Var(Xi)

)2

.

Lemma A2. For any N random variables X1, X2, . . . , XN defined on the same probability

space:

Var(X1 + · · ·+XN) ≤ N Var(X1) + · · ·+N Var(XN).

Proof. Apply Lemma A1 to get:

Var(X1 + · · ·+XN) ≤
( N∑

i=1

√
Var(Xi)

)2

= N2

(
1

N

N∑
i=1

√
Var(Xi)

)2

The square is a convex function, so Jensen’s inequality gives:

N2

(
1

N

N∑
i=1

√
Var(Xi)

)2

≤ N2

(
1

N

N∑
i=1

Var(Xi)

)
≤ N

N∑
i=1

Var(Xi).

Lemma A3. If Condition 1 holds, then for all i ∈ U and d ∈ ∆:

1. |ȳi(d)| ≤ k1,

2. E[Y 2
i |Di = d] ≤ k21,
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3.
∣∣E[εiεj |Di = Dj = d]

∣∣ ≤ 4k21.

Proof. Consider each statement in turn:

1. Recall the definition of ȳi(d), and note:

|ȳi(d)| =
∣∣E[yi(Z) |Di = d]

∣∣ ≤ E
[
|yi(Z)|

∣∣Di = d
]
≤ E

[
k1
∣∣Di = d

]
= k1.

2. Note that |Yi| = |yi(Z)| ≤ k1, so:

E[Y 2
i |Di = d] = E

[
|yi(Z)|2

∣∣Di = d
]

= k21.

3. Using a similar logic as in the previous parts of the proof:

∣∣E[εiεj |Di = Dj = d]
∣∣ ≤ E

[(
|Yi|+ |ȳi(d)|

)(
|Yj|+ |ȳj(d)|

) ∣∣Di = Dj = d
]

≤ E
[
4k21

∣∣Di = Dj = d
]

= 4k21.

B.2 Proposition 1

Proposition 1. If Condition 2 holds for a and b, then: E[τ̂(a, b)] = τ(a, b).

Proof. For a generic exposure d ∈ ∆ satisfying Condition 2:

1

n

n∑
i=1

E[DidYi]

πi(d)
=

1

n

n∑
i=1

πi(d) E
[
Yi
∣∣Di = d

]
πi(d)

=
1

n

n∑
i=1

πi(d)ȳi(d)

πi(d)
=

1

n

n∑
i=1

ȳi(d),

so:

E[τ̂(a, b)] =
1

n

n∑
i=1

E[DiaYi]

πi(a)
− 1

n

n∑
i=1

E[DibYi]

πi(b)
=

1

n

n∑
i=1

ȳi(a)− 1

n

n∑
i=1

ȳi(b) = τ(a, b).

B.3 Proposition 2

Proposition 2. If Conditions 1 and 2 hold for a and b, then:

Var
(
τ̂(a, b)

)
≤ 8k21k2n

−1 + 20k21k
2
2

[
Ca + Cb

]
+ 4
[
Ea + Eb + Ua + Ub

]
,

where Cd, Ed and Ud are given by Definitions 5 and 7.
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Proof. Let Ri(d) = Did/πi(d), so:

τ̂(a, b) =
1

n

n∑
i=1

Ri(a)Yi −
1

n

n∑
i=1

Ri(b)Yi

Apply Lemma A2 to get:

Var
(
τ̂(a, b)

)
≤ 2 Var

(
1

n

n∑
i=1

Ri(a)Yi

)
+ 2 Var

(
1

n

n∑
i=1

Ri(b)Yi

)
Note that Yi = ȳi(Di) + εi, so for a generic exposure d ∈ ∆:

1

n

n∑
i=1

Ri(d)Yi =
1

n

n∑
i=1

Ri(d)ȳi(d) +
1

n

n∑
i=1

Ri(d)εi

Apply Lemma A2 again:

2 Var

(
1

n

n∑
i=1

Ri(d)Yi

)
≤ 4 Var

(
1

n

n∑
i=1

Ri(d)ȳi(d)

)
+ 4 Var

(
1

n

n∑
i=1

Ri(d)εi

)
=

4

n2

n∑
i=1

Var
(
Ri(d)ȳi(d)

)
+

4

n2

n∑
i=1

Var
(
Ri(d)εi

)
+

4

n2

n∑
i=1

∑
j 6=i

Cov
(
Ri(d)ȳi(d), Rj(d)ȳj(d)

)
+

4

n2

n∑
i=1

∑
j 6=i

Cov
(
Ri(d)εi, Rj(d)εj

)
Consider the first two terms of the expression. Note that:

E[εi |Di = d] = E[Yi − ȳi(d) |Di = d] = E[yi(Z) |Di = d]− ȳi(d) = 0 (1)

so

Cov
(
Ri(d)ȳi(d), Ri(d)εi

)
= E

[
[Ri(d)]2ȳi(d)εi

]
− E[Ri(d)ȳi(d)] E[Ri(d)εi]

=
ȳi(d)

πi(d)
E[εi |Di = d]− ȳi(d) E[εi |Di = d] = 0

and in turn:

Var
(
Ri(d)Yi

)
= Var

(
Ri(d)ȳi(d) +Ri(d)εi

)
= Var

(
Ri(d)ȳi(d)

)
+ Var

(
Ri(d)εi

)
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Condition 2 and Lemma A3 give the following bound:

Var
(
Ri(d)Yi

)
≤ E

[
[Ri(d)]2Y 2

i

]
=

E[Y 2
i |Di = d]

πi(d)
≤ k21k2

so:

4

n2

n∑
i=1

Var
(
Ri(d)ȳi(d)

)
+

4

n2

n∑
i=1

Var
(
Ri(d)εi

)
=

4

n2

n∑
i=1

Var
(
Ri(d)Yi

)
≤ 4k21k2

n

Recall Ri(d) = Did/πi(d) and consider the third term of the variance expression:

4

n2

n∑
i=1

∑
j 6=i

Cov
(
Ri(d)ȳi(d), Rj(d)ȳj(d)

)
=

4

n2

n∑
i=1

∑
j 6=i

ȳi(d)ȳj(d)

πi(d)πj(d)
Cov

(
Did, Djd

)
≤ 4k21k

2
2

n2

n∑
i=1

∑
j 6=i

∣∣Cov
(
Did, Djd

)∣∣
= 4k21k

2
2Cd

which again uses Condition 2 and Lemma A3.

Now consider the fourth and final term. Recall Sij(d, q) = 1[πij(d, q) = 0] and decom-

pose the sum as such:

4

n2

n∑
i=1

∑
j 6=i

Cov
(
Ri(d)εi, Rj(d)εj

)
=

4

n2

n∑
i=1

∑
j 6=i

Sij(d, d) Cov
(
Ri(d)εi, Rj(d)εj

)
+

4

n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, d)

]
Cov

(
Ri(d)εi, Rj(d)εj

)
Start with the terms for which Sij(d, d) = 0, and note that the derivation in (1) implies:

E
[
Ri(d)εi

]
= E

[
E
[
Ri(d)εi

∣∣Di

]]
= E

[
Ri(d) E

[
εi
∣∣Di

]]
= 0

which allows the covariances to be decomposed as:

Cov
(
Ri(d)εi, Rj(d)εj

)
= E

[
Ri(d)εiRj(d)εj

]
− E

[
Ri(d)εi

]
E
[
Rj(d)εj

]
= E

[
Ri(d)Rj(d)εiεj

]
=

Pr(Di = Dj = d)

πi(d)πj(d)
E
[
εiεj

∣∣Di = Dj = d
]
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=
Pr(Di = Dj = d)− πi(d)πj(d) + πi(d)πj(d)

πi(d)πj(d)

× E
[
εiεj

∣∣Di = Dj = d
]

=
Cov

(
Did, Djd

)
πi(d)πj(d)

E
[
εiεj

∣∣Di = Dj = d
]

+ E
[
εiεj

∣∣Di = Dj = d
]

where Sij(d, d) = 0 ensures that E
[
εiεj

∣∣Di = Dj = d
]
is unambiguously defined.

Consider the first term through the lens of Condition 2 and Lemma A3:

Cov
(
Did, Djd

)
πi(d)πj(d)

E
[
εiεj

∣∣Di = Dj = d
]
≤ 4k21k

2
2

∣∣Cov
(
Did, Djd

)∣∣
For the second term, recall that εi = eij + uij, so:

E
[
εiεj

∣∣Di = Dj = d
]

= E
[[
eij + uij

][
eji + uji

] ∣∣∣Di = Dj = d
]

= E
[
eijeji + eijuji + uijeji + uijuji

∣∣Di = Dj = d
]

Note that eij = eij(d, d) and eji = eji(d, d) are constant conditional on Di = Dj = d, and:

E[uij |Di, Dj] = E
[
Yi − ȳij(Di, Dj)

∣∣Di, Dj

]
= E[Yi |Di, Dj]− ȳij(Di, Dj) = 0

so:

E
[
eijuji

∣∣Di = Dj = d
]

= eij(d, d) E
[
uji
∣∣Di = Dj = d

]
= 0

which gives:

E
[
εiεj

∣∣Di = Dj = d
]

= eij(d, d)eji(d, d) + E
[
uijuji

∣∣Di = Dj = d
]

= eij(d, d)eji(d, d) + Cov(uij, uji |Di = Dj = d)

The two terms taken together then give for Sij(d, d) = 0:

Cov
(
Ri(d)εi, Rj(d)εj

)
≤ 4k21k

2
2

∣∣Cov
(
Did, Djd

)∣∣+ eij(d, d)eji(d, d) + Cov(uij, uji |Di = Dj = d).

38



For terms with Sij(d, d) = 1, Ri(d)Rj(d) is constant at zero, so:

Cov
(
Ri(d)εi, Rj(d)εj

)
= E

[
Ri(d)Rj(d)εiεj

]
= 0

Recall that eij(d, d) = 0 and Cov(uij, uji |Di = Dj = d) = 0 when Sij(d, d) = 1, so:

Cov
(
Ri(d)εi, Rj(d)εj

)
≤ 4k21k

2
2

∣∣Cov
(
Did, Djd

)∣∣+ eij(d, d)eji(d, d) + Cov(uij, uji |Di = Dj = d).

also for Sij(d, d) = 1. It follows that:

4

n2

n∑
i=1

∑
j 6=i

Cov
(
Ri(d)εi, Rj(d)εj

)
≤ 16k21k

2
2

n2

n∑
i=1

∑
j 6=i

∣∣Cov
(
Did, Djd

)∣∣
+

4

n2

n∑
i=1

∑
j 6=i

eij(d, d)eji(d, d)

+
4

n2

n∑
i=1

∑
j 6=i

Cov(uij, uji |Di = Dj = d)

= 16k21k
2
2Cd + 4Ed + 4Ud

The derivations for all four terms taken together yield:

2 Var

(
1

n

n∑
i=1

Ri(d)Yi

)
≤ 4k21k2

n
+ 20k21k

2
2Cd + 4Ed + 4Ud

so the variance is bounded as:

Var
(
τ̂(a, b)

)
≤ 2 Var

(
1

n

n∑
i=1

Ri(a)Yi

)
+ 2 Var

(
1

n

n∑
i=1

Ri(b)Yi

)
≤ 8k21k2

n
+ 20k21k

2
2

[
Ca + Cb

]
+ 4
[
Ea + Eb + Ua + Ub

]
.

B.4 Proposition 3

Proposition 3. If Conditions 1 and 2 hold for a and b, then:

τ̂(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.

If Conditions 3 and 4 also hold, then: τ̂(a, b)− τ(a, b) = op(1).
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Proof. The proof presumes that Ea, Eb, Ua and Ub are non-negative. If they are not, the

contravening quantities can be set to zero, and the proof would apply.

Consider the root mean square error:√
E

[(
τ̂(a, b)− τ(a, b)

)2]
=
√

Var
(
τ̂(a, b)

)
≤
√

8k21k2n
−1 + 20k21k

2
2

[
Ca + Cb

]
+ 4
[
Ea + Eb + Ua + Ub

]
where the first equality follows from Proposition 1. Concavity of the square root gives:√

Var
(
τ̂(a, b)

)
≤ 3k1k

0.5
2 n−0.5 + 5k1k2

[
C0.5

a + C0.5
b

]
+ 2
[
E0.5

a + E0.5
b + U0.5

a + U0.5
b

]
which gives the rate of convergence in the L2-norm:√

E

[(
τ̂(a, b)− τ(a, b)

)2]
= O

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
which in turn gives the rate of convergence in probability by Markov’s inequality (see,

e.g., Lemma A5 in the appendix of Sävje et al., 2018). Conditions 3 and 4 complete the

proof.

B.5 Proposition 4

The linearization used to prove consistency for the Hájek estimator requires an alternative

representation of the estimator.

Definition A1 (Components for the Hájek estimator).

µd =
n∑

i=1

ȳi(d), µ̂d =
n∑

i=1

DidYi
πi(d)

, and n̂d =
n∑

i=1

Did

πi(d)
.

Lemma A4. Given Condition 1, µd = O(n) for d ∈ ∆.

Proof. Consider the definition of µd through the lens of Lemma A3:

µd =
n∑

i=1

ȳi(d) ≤
n∑

i=1

|ȳi(d)| ≤
n∑

i=1

k1 = k1n.
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Lemma A5. Given Conditions 1 and 2, (µ̂d − µd)/n = Op

(
n−0.5 + C0.5

d + E0.5
d + U0.5

d

)
.

Proof. Note that τ̂(a, b) = (µ̂a − µ̂b)/n and τ(a, b) = (µa − µb)/n, so the proofs of Propo-

sitions 1 and 2 can be copied almost in verbatim to show:

E
[
µ̂d

]
= µd, and

Var(µ̂d)

n2
≤ 2k21k2

n
+ 10k21k

2
2Cd + 2Ed + 2Ud.

The logic of the proof of Proposition 3 then gives:√
E
[
(µ̂d − µd)2/n2

]
= O

(
n−0.5 + C0.5

d + E0.5
d + U0.5

d

)
.

Markov’s inequality completes the proof as in the proof of Proposition 3.

Lemma A6. Given Condition 2, (n̂d − n)/n = Op

(
n−0.5 + C0.5

d

)
.

Proof. The first step is to show that E[n̂d] = n when d satisfies Condition 2:

E[n̂d] =
n∑

i=1

E[Did]

πi(d)
=

n∑
i=1

πi(d)

πi(d)
= n.

Next consider the variance:

Var(n̂d) =
n∑

i=1

Var(Did)

[πi(d)]2
+

n∑
i=1

∑
j 6=i

Cov(Did, Djd)

πi(d)πj(d)
,

where by Condition 2:

Var(Did)

[πi(d)]2
=
πi(d)[1− πi(d)]

[πi(d)]2
≤ k2, and

Cov(Did, Djd)

πi(d)πj(d)
≤ k22

∣∣Cov(Did, Djd)
∣∣,

so Var(n̂d)/n
2 ≤ k2n

−1 + k22Cd.

The logic of the proof of Proposition 3 then gives:√
E
[
(n̂d − n)2/n2

]
= O

(
n−0.5 + C0.5

d

)
,

and Markov’s inequality completes the proof.

Proposition 4. If Conditions 1, 2, 3 and 4 hold for a and b, then τ̂há(a, b) is consistent

for τ(a, b) and converges at the following rate:

τ̂há(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.
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Proof. Note that τ̂há(a, b) = µ̂a/n̂a − µ̂b/n̂b and τ(a, b) = µa/n− µb/n, so we can write:

τ̂há(a, b)− τ(a, b) =

(
µ̂a

n̂a

− µa

n

)
−
(
µ̂b

n̂b

− µb

n

)
For a generic exposure d consider:

µ̂d

n̂d

− µd

n
=
µ̂d/n

n̂d/n
− (µd/n)(n̂d/n)

n̂d/n
=

(µ̂d − µd)/n

n̂d/n
− (µd/n)(n̂d − n)/n

n̂d/n

where Lemma A6 ensures that we can ignore the event n̂d = 0.

Let f(x, y) = x/y and consider a Taylor expansion of the two terms around (0, 1):

(µ̂d − µd)/n

n̂d/n
= f

(
(µ̂d − µd)/n, n̂d/n

)
= (µ̂d − µd)/n+ r1

(µd/n)(n̂d − n)/n

n̂d/n
= f

(
(µd/n)(n̂d − n)/n, n̂d/n

)
= (µd/n)(n̂d − n)/n+ r2

where r1 = op
(
(µ̂d − µd)/n + (n̂d − n)/n

)
and r2 = op

(
(µd/n)(n̂d − n)/n + (n̂d − n)/n

)
because Lemmas A4, A5 and A6 give convergence of (µ̂d − µd)/n and (µd/n)(n̂d − n)/n

to zero and of n̂d/n to one. Lemma A4 gives (µd/n)(n̂d − n)/n = Op

(
(n̂d − n)/n

)
, so by

Lemmas A5 and A6:

τ̂há(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.

B.6 Proposition 5 and 6

The main text considers non-random predictions. The choice was made to expedite ex-

position, and the more general case is covered here. Throughout, it will be assumed that

the predictions are sufficiently well-behaved asymptotically so their second moments exist:

E
[
|ŷi(d)|2

]
≤ k for all i ∈ U and d ∈ ∆.

Condition A1. The predictions are said to be external for exposure d ∈ ∆ if they are

jointly independent of treatment assignment:
(
ŷ1(d), ŷ2(d), . . . , ŷn(d)

)
⊥⊥ Z.

Definition A2. The average prediction dependence for exposure d ∈ ∆ is:

Pd =
1

n2

n∑
i=1

∑
j 6=i

∣∣Cov
(
ŷi(d), ŷj(d)

)∣∣.
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An alternative approach to focusing on the dependence between predictions is to con-

sider their convergence. In particular, the approach used in the proof of Lemma A1 can be

used to bound Pd as:

Pd =
1

n2

n∑
i=1

∑
j 6=i

∣∣Cov
(
ŷi(d), ŷj(d)

)∣∣ ≤ ( 1

n

n∑
i=1

√
Var(ŷi(d))

)2

.

Lemma A7. Assume the predictions are external. If Condition 2 holds for a and b, then:

E[τ̂de(a, b)] = τ(a, b).

Proof. Rewrite the estimator as:

τ̂de(a, b) =
1

n

n∑
i=1

[
ŷi(a)− ŷi(b)

]
+

1

n

n∑
i=1

(Dia −Dib)
[
Yi − ŷi(Di)

]
πi(Di)

=
1

n

n∑
i=1

[
ŷi(a)− ŷi(b)

]
+

1

n

n∑
i=1

[
DiaYi
πi(a)

− DibYi
πi(b)

− Diaŷi(a)

πi(a)
+
Dibŷi(b)

πi(b)

]
= τ̂(a, b) +

1

n

n∑
i=1

[
ŷi(a)− ŷi(b)

]
− 1

n

n∑
i=1

[
Diaŷi(a)

πi(a)
− Dibŷi(b)

πi(b)

]
.

Taking expectations yields:

E
[
τ̂de(a, b)

]
= τ(a, b) +

1

n

n∑
i=1

[
E
[
ŷi(a)

]
−E

[
ŷi(b)

]]
− 1

n

n∑
i=1

[
E
[
Diaŷi(a)

]
πi(a)

−
E
[
Dibŷi(b)

]
πi(b)

]
.

We get E
[
Didŷi(d)

]
= E

[
Dia

]
E
[
ŷi(a)

]
= πi(d) E

[
ŷi(a)

]
by independence between Z and

the predictions, so by Condition 2:

E
[
Didŷi(d)

]
πi(d)

=
πi(d) E

[
ŷi(a)

]
πi(d)

= E
[
ŷi(a)

]
,

and the two last terms in the expression of E
[
τ̂de(a, b)

]
cancel.

Lemma A8. Assume the predictions are external and Pd = o(1) for a and b. If Condi-

tions 1, 2, 3 and 4 hold for a and b, then τ̂de(a, b) is consistent for τ(a, b) and converges at

the following rate:

τ̂de(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b + P 0.5

a + P 0.5
b

)
.

43



Proof. Write the estimator as in the proof for Proposition 5:

τ̂de(a, b) = τ̂(a, b) +
1

n

n∑
i=1

[
ŷi(a)− ŷi(b)

]
− 1

n

n∑
i=1

[
Diaŷi(a)

πi(a)
− Dibŷi(b)

πi(b)

]
Apply Lemma A2 to get:

Var(τ̂de(a, b)) ≤ 5 Var
(
τ̂(a, b)

)
+

5

n2
Var

( n∑
i=1

ŷi(a)

)
+

5

n2
Var

( n∑
i=1

ŷi(b)

)
+

5

n2
Var

( n∑
i=1

Diaŷi(a)

πi(a)

)
+

5

n2
Var

( n∑
i=1

Dibŷi(b)

πi(b)

)
The first term is bounded by Proposition 2. Consider the two subsequent terms:

5

n2
Var

( n∑
i=1

ŷi(d)

)
=

5

n2

n∑
i=1

Var
(
ŷi(d)

)
+

5

n2

n∑
i=1

∑
j 6=i

Cov
(
ŷi(d), ŷj(d)

)
≤ 5k

n
+ 5Pd,

where E
[
|ŷi(d)|2

]
≤ k. Next consider the last two terms in the variance expression:

5

n2
Var

( n∑
i=1

Didŷi(d)

πi(d)

)
=

5

n2

n∑
i=1

Var
(
Didŷi(d)

)
[πi(d)]2

+
5

n2

n∑
i=1

∑
j 6=i

Cov
(
Didŷi(d), Djdŷj(d)

)
πi(d)πj(d)

Remembering that predictions are external and applying the covariance decomposition in

Bohrnstedt & Goldberger (1969) yield:

Cov
(
Didŷi(d), Djdŷj(d)

)
= πi(d)πj(d) Cov

(
ŷi(d), ŷj(d)

)
+E
[
ŷi(d)

]
E
[
ŷj(d)

]
Cov

(
Did, Djd

)
+ Cov

(
Did, Djd

)
Cov

(
ŷi(d), ŷj(d)

)
Note that 0 ≤ πi(d)πj(d) + Cov

(
Did, Djd

)
≤ 1. Furthermore:

E
[
ŷi(d)

]
E
[
ŷj(d)

]
Cov

(
Did, Djd

)
≤ k

∣∣Cov(Did, Djd)
∣∣,

where E
[
|ŷi(d)|2

]
≤ k. It follows that:

Cov
(
Didŷi(d), Djdŷj(d)

)
πi(d)πj(d)

≤ k22
∣∣Cov

(
ŷi(d), ŷj(d)

)∣∣+ kk22
∣∣Cov(Did, Djd)

∣∣.
Recall once more the independence between the assignments and predictions:
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Var
(
Didŷi(d)

)
[πi(d)]2

=
[πi(d)]2 Var

(
ŷi(d)

)
+ Var

(
Did

)(
E
[
ŷi(d)

])2
+ Var

(
Did

)
Var
(
ŷi(d)

)
[πi(d)]2

≤ k + kk2 + kk2 ≤ 3kk2.

Taken together:

5

n2
Var

( n∑
i=1

Didŷi(d)

πi(d)

)
≤ 15kk2

n
+ 5k22Pd + 5kk22Cd.

Combined with Proposition 2, the variance is bounded as:

Var(τ̂de(a, b)) ≤
(
40k21k2 + 30kk2 + 10k

)
n−1 +

(
100k21k

2
2 + 5kk22

)[
Ca + Cb

]
+ 20

[
Ea + Eb + Ua + Ub

]
+
(
5k22 + 5

)[
Pa + Pb

]
Proposition 5 together with the logic of the proof of Proposition 3 provide convergence

in the L2-norm:√
E
[(
τ̂de(a, b)− τ̂(a, b)

)2]
= O

(
n−0.5+C0.5

a +C0.5
b +E0.5

a +E0.5
b +U0.5

a +U0.5
b +P 0.5

a +P 0.5
b

)
.

Markov’s inequality completes the proof.

Proposition 5. If Condition 2 holds for a and b, and the predictions are non-random,

then: E[τ̂de(a, b)] = τ(a, b).

Proof. Non-random predictions satisfy Condition A1.

Proposition 6. If Conditions 1, 2, 3 and 4 hold for a and b, and the predictions are fixed,

then τ̂de(a, b) is consistent for τ(a, b) and converges at the following rate:

τ̂de(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.

Proof. Non-random predictions satisfy Condition A1 and Pd = 0 for all d ∈ ∆.
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B.7 Proposition 7

Proposition 7. Assume xi ∈ X for some bounded X ⊂ Rp and E
[
‖β̂(d)‖

]
= O(1).

If Conditions 1, 2, 3 and 4 hold for a and b, then τ̂gr(a, b) is consistent for τ(a, b) and

converges at the following rate:

τ̂gr(a, b)− τ(a, b) = Op

(
n−0.5 + C0.5

a + C0.5
b + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
.

Proof. Rewrite the estimator as:

τ̂gr(a, b) = τ̂(a, b) +

[
1

n

n∑
i=1

(
xi −

Diaxi

πi(a)

)]
β̂(a)−

[
1

n

n∑
i=1

(
xi −

Dibxi

πi(b)

)]
β̂(b).

Using the same approach as in the proofs of Propositions 1, 2 and 3, it can be shown that:[
1

n

n∑
i=1

(
xi −

Didxi

πi(d)

)]
= Op

(
n−0.5 + C0.5

d

)
.

By Markov’s inequality, E
[
‖β̂(d)‖

]
= O(1) implies β̂(d) = Op(1), so:[

1

n

n∑
i=1

(
xi −

Didxi

πi(d)

)]
β̂(d) = Op

(
n−0.5 + C0.5

d

)
.

The proposition then follows from Proposition 3.

B.8 Proposition 8

Proposition 8. Assume Π(d, p) ≤ k < ∞ for d ∈ {a, b} and some p > 2. Also assume

S̄d = o(1) and Cd

(
p/(p − 2)

)
= o(1) for d ∈ {a, b}. If Conditions 1 and 4 hold, then the

Horvitz-Thompson estimator is consistent for the misspecification-robust exposure effect

and converges at the following rate:

τ̂(a, b)− τ(a, b) = Op

(
n−0.5 + S̄a + S̄b + C̃0.5

ap + C̃0.5
bp + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
,

where C̃dp is short-hand for Cd

(
p/(p− 2)

)
.
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Proof. First note that:

τ̂zht(a, b) =
1

n

n∑
i=1

(1− Si(a))DiaYi
πi(a) + Si(a)

− 1

n

n∑
i=1

(1− Si(b))DibYi
πi(b) + Si(b)

,

with probability one since Did = 0 when Si(d) = 1. Thus, its expectation is:

E[τ̂zht(a, b)] =
1

n

n∑
i=1

ȳi(a)− 1

n

n∑
i=1

ȳi(b)−
1

n

n∑
i=1

Si(a)ȳi(a) +
1

n

n∑
i=1

Si(b)ȳi(b),

and:

∣∣E[τ̂zht(a, b)]− τ(a, b)
∣∣ ≤ 1

n

n∑
i=1

Si(a)
∣∣ȳi(a)

∣∣+
1

n

n∑
i=1

Si(b)
∣∣ȳi(b)∣∣ ≤ k1[S̄a + S̄b].

Next consider the variance:

Var
(
τ̂zht(a, b)

)
≤ 2 Var

(
1

n

n∑
i=1

(1− Si(a))DiaYi
πi(a) + Si(a)

)
+ 2 Var

(
1

n

n∑
i=1

(1− Si(b))DibYi
πi(b) + Si(b)

)
where Lemma A2 was used. Using a similar decomposition as in Proposition 2:

2 Var

(
1

n

n∑
i=1

(1− Si(d))DidYi
πi(d) + Si(d)

)
≤ 4

n2

n∑
i=1

Var

(
(1− Si(d))DidYi
πi(d) + Si(d)

)
+

4

n2

n∑
i=1

∑
j 6=i

Cov

(
(1− Si(d))Didȳi(d)

πi(d) + Si(d)
,
(1− Sj(d))Djdȳj(d)

πj(d) + Sj(d)

)

+
4

n2

n∑
i=1

∑
j 6=i

Cov

(
(1− Si(d))Didεi
πi(d) + Si(d)

,
(1− Sj(d))Djdεj
πj(d) + Sj(d)

)
.

Consider the first term:

4

n2

n∑
i=1

Var

(
(1− Si(d))DidYi
πi(d) + Si(d)

)
≤ 4

n2

n∑
i=1

E

[
(1− Si(d))DidY

2
i

[πi(d)]2 + Si(d)

]
=

4

n2

n∑
i=1

(1− Si(d)) E[Y 2
i |Di = d]

πi(d) + Si(d)
≤ 4k21

n2

n∑
i=1

(1− Si(d))

πi(d) + Si(d)
≤ 4k21Π(d, p)

n
,

where the last inequality follows from Jensen’s inequality when p ≥ 1.
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Consider the second term next:

4

n2

n∑
i=1

∑
j 6=i

Cov

(
(1− Si(d))Didȳi(d)

πi(d) + Si(d)
,
(1− Sj(d))Djdȳj(d)

πj(d) + Sj(d)

)

≤ 4k21
n2

n∑
i=1

∑
j 6=i

[
(1− Si(d))

πi(d) + Si(d)

][
(1− Sj(d))

πj(d) + Sj(d)

]∣∣Cov
(
Did, Djd

)∣∣
Apply Hölder’s inequality with conjugates p/2 and p/(p− 2):

4k21
n2

n∑
i=1

∑
j 6=i

[
(1− Si(d))

πi(d) + Si(d)

][
(1− Sj(d))

πj(d) + Sj(d)

]∣∣Cov
(
Did, Djd

)∣∣
≤ 4k21

n2

[
n∑

i=1

∑
j 6=i

[
(1− Si(d))

πi(d) + Si(d)

]p/2[
(1− Sj(d))

πj(d) + Sj(d)

]p/2]2/p

×

[
n∑

i=1

∑
j 6=i

∣∣Cov
(
Did, Djd

)∣∣p/(p−2)](p−2)/p

= 4k21

[
1

n2

n∑
i=1

∑
j 6=i

[
(1− Si(d))

πi(d) + Si(d)

]p/2[
(1− Sj(d))

πj(d) + Sj(d)

]p/2]2/p

×

[
1

n2

n∑
i=1

∑
j 6=i

∣∣Cov
(
Did, Djd

)∣∣p/(p−2)](p−2)/p
Then: [

1

n2

n∑
i=1

∑
j 6=i

[
(1− Si(d))

πi(d) + Si(d)

]p/2[
(1− Sj(d))

πj(d) + Sj(d)

]p/2]2/p

≤

[
1

n2

n∑
i=1

n∑
j=1

[
(1− Si(d))

πi(d) + Si(d)

]p/2[
(1− Sj(d))

πj(d) + Sj(d)

]p/2]2/p

=

[(
1

n

n∑
i=1

[
(1− Si(d))

πi(d) + Si(d)

]p/2)2]2/p

≤

[
1

n

n∑
i=1

[
(1− Si(d))

πi(d) + Si(d)

]p]2/p
=
[
Π(d, p)

]2
where the last inequality follows from Jensen’s inequality. Taken together:

4

n2

n∑
i=1

∑
j 6=i

Cov

(
(1− Si(d))Didȳi(d)

πi(d) + Si(d)
,
(1− Sj(d))Djdȳj(d)

πj(d) + Sj(d)

)
≤ 4k21

[
Π(d, p)

]2
Cd

(
p/(p− 2)

)
.
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Consider the final term:

4

n2

n∑
i=1

∑
j 6=i

Cov

(
(1− Si(d))Didεi
πi(d) + Si(d)

,
(1− Sj(d))Djdεj
πj(d) + Sj(d)

)

≤ 4

n2

n∑
i=1

∑
j 6=i

[
(1− Si(d))

πi(d) + Si(d)

][
(1− Sj(d))

πj(d) + Sj(d)

]
Cov

(
Didεi, Djdεj

)
If either Si(d) = 1 or Sj(d) = 1, then:[

(1− Si(d))

πi(d) + Si(d)

][
(1− Sj(d))

πj(d) + Sj(d)

]
Cov

(
Didεi, Djdεj

)
= 0.

Furthermore, if Si(d) = 0 and Sj(d) = 0 but Sij(d, d) = 1[πij(d, d) = 0] = 1, then:

Cov
(
Didεi, Djdεj

)
= E

[
DidDjdεiεj

]
− E

[
Didεi

]
E
[
Djdεj

]
= 0,

since E[Didεi] = 0 when Si(d) = 0 as shown in the proof of Proposition 2. Note that

Si(d) = 0 and Sj(d) = 0 are implied by Sij(d, d) = 0, so:

4

n2

n∑
i=1

∑
j 6=i

[
(1− Si(d))

πi(d) + Si(d)

][
(1− Sj(d))

πj(d) + Sj(d)

]
Cov

(
Didεi, Djdεj

)
=

4

n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, d)

]
Cov

(
Didεi, Djdεj

)
πi(d)πj(d) + Si(d) + Sj(d)

Using the same decomposition as in the proof of Proposition 2:

Cov
(
Didεi, Djdεj

)
πi(d)πj(d)

=
Cov

(
Did, Djd

)
πi(d)πj(d)

E
[
εiεj

∣∣Di = Dj = d
]

+ E
[
εiεj

∣∣Di = Dj = d
]
,

≤
4k21
∣∣Cov

(
Did, Djd

)∣∣
πi(d)πj(d)

+ E
[
εiεj

∣∣Di = Dj = d
]

when Sij(d, d) = 0 using Lemma A3, so:

4

n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, d)

]
Cov

(
Didεi, Djdεj

)
πi(d)πj(d) + Si(d) + Sj(d)

≤ 16k21
n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, d)

]∣∣Cov
(
Did, Djd

)∣∣
πi(d)πj(d) + Si(d) + Sj(d)
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+
4

n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, d)

]
E
[
εiεj

∣∣Di = Dj = d
]

Use Hölder’s inequality as above to separate the factors in the first term:

16k21
n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, d)

]∣∣Cov
(
Did, Djd

)∣∣
πi(d)πj(d) + Si(d) + Sj(d)

≤ 16k21
n2

n∑
i=1

∑
j 6=i

[
(1− Si(d))

πi(d) + Si(d)

][
(1− Sj(d))

πj(d) + Sj(d)

]∣∣Cov
(
Did, Djd

)∣∣
≤ 16k21

[
Π(d, p)

]2
Cd

(
p/(p− 2)

)
.

Focusing on the second term, recall from the proof of Proposition 2:

E
[
εiεj

∣∣Di = Dj = d
]

= eij(d, d)eji(d, d) + Cov(uij, uji |Di = Dj = d)

when Sij(d, d) = 0. It follows:

4

n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, d)

]
E
[
εiεj

∣∣Di = Dj = d
]

=
4

n2

n∑
i=1

∑
j 6=i

eij(d, d)eji(d, d) +
4

n2

n∑
i=1

∑
j 6=i

Cov(uij, uji |Di = Dj = d) = 4Ed + 4Ud,

because eij(d, d) = Cov(uij, uji |Di = Dj = d) = 0 when Sij(d, d) = 1. Taken together:

Var
(
τ̂zht(a, b)

)
≤ 8k21k

n
+ 20k21k

2C̄ + 4Ea + 4Eb + 4Ua + 4Ub.

where C̄ = Ca

(
p/(p− 2)

)
+Cb

(
p/(p− 2)

)
and Π(d, p) ≤ k for d ∈ {a, b} by the premise of

the proposition.

Decompose the root mean square error with respect to the exposure effect into the

estimator’s bias and variance:√
E
[(
τ̂(a, b)− τ(a, b)

)2] ≤ ∣∣E[τ̂zht(a, b)]− τ(a, b)
∣∣+
√

Var
(
τ̂(a, b)

)
,

which gives:√
E
[(
τ̂(a, b)− τ(a, b)

)2]
= O

(
n−0.5 + S̄a + S̄b + C̄0.5 + E0.5

a + E0.5
b + U0.5

a + U0.5
b

)
,

and Markov’s inequality gives the rate of convergence in probability.
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B.9 Proposition 9

Proposition 9. If Conditions 1 and 2 hold, then:

E
[
V̂aras

(
τ̂(a, b)

)]
= Var

(
τ̂(a, b)

)
+B1 +B2(a, b) +B2(b, a) +B3(a) +B3(b)

+ 2B4(a, b)−B4(a, a)−B4(b, b),

where:

B1 =
1

n2

n∑
i=1

[
ȳi(a)− ȳi(b)

]2
,

B2(d, q) =
1

2n2

n∑
i=1

∑
j 6=i

(
Sij(d, d)

[
ȳi(d) + ȳj(d)

]2
+ Sij(d, q)

[
ȳi(d)− ȳj(q)

]2)
,

B3(d) =
1

n2

n∑
i=1

∑
j 6=i

[
Sij(d, a) + Sij(d, b)

]
Var(εi |Di = d),

B4(d, q) =
1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(d, q)

][
ȳi(d)eji(q, d) + ȳj(q)eij(d, q) + eij(d, q)eji(q, d)

+ Cov(uij, uji |Di = d,Dj = q)
]
.

Proof. Consider:

Pij(d, q) =
πij(d, q)− πi(d)πj(q)

πij(d, q)πi(d)πj(q) + Sij(d, q)

=
1− Sij(d, q)

πi(d)πj(q)
− 1− Sij(d, q)

πij(d, q) + Sij(d, q)
− Sij(d, q)πi(d)πj(q)

which allows the following decomposition of the first term of the variance estimator:

1

n2

n∑
i=1

n∑
j=1

(Dia −Dib)(Dja −Djb)Pij(Di, Dj)YiYj

=
1

n2

n∑
i=1

n∑
j=1

[1− Sij(Di, Dj)](Dia −Dib)(Dja −Djb)

πi(Di)πj(Dj)
YiYj

− 1

n2

n∑
i=1

n∑
j=1

[1− Sij(Di, Dj)](Dia −Dib)(Dja −Djb)

πij(Di, Dj) + Sij(Di, Dj)
YiYj
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− 1

n2

n∑
i=1

n∑
j=1

Sij(Di, Dj)(Dia −Dib)(Dja −Djb)πi(Di)πj(Dj)YiYj

Note that Sij(Di, Dj) = 0 with probability one, so:

1

n2

n∑
i=1

n∑
j=1

[1− Sij(Di, Dj)](Dia −Dib)(Dja −Djb)

πi(Di)πj(Dj)
YiYj =

(
1

n

n∑
i=1

(Dia −Dib)Yi
πi(Di)

)2

=

(
1

n

n∑
i=1

[
DiaYi
πi(a)

− DibYi
πi(b)

])2

=
(
τ̂(a, b)

)2
and:

1

n2

n∑
i=1

n∑
j=1

Sij(Di, Dj)(Dia −Dib)(Dja −Djb)πi(Di)πj(Dj)YiYj = 0

Consider the expectation of the second term of the decomposition:

E

[
1

n2

n∑
i=1

n∑
j=1

[1− Sij(Di, Dj)](Dia −Dib)(Dja −Djb)

πij(Di, Dj) + Sij(Di, Dj)
YiYj

]

=
1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(a, a)

]
E
[
YiYj

∣∣Di = Dj = a
]

+
1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(b, b)

]
E
[
YiYj

∣∣Di = Dj = b
]

− 2

n2

n∑
i=1

∑
j 6=i

[
1− Sij(a, b)

]
E
[
YiYj

∣∣Di = a,Dj = b
]

+
1

n2

n∑
i=1

E
[
Y 2
i

∣∣Di = a
]

+
1

n2

n∑
i=1

E
[
Y 2
i

∣∣Di = b
]

which follows from Sii(a, a) = Sii(b, b) = 0 by Condition 2, and Sii(a, b) = 1 by the

fundamental problem of causal inference. Consider the conditional expectations:

E
[
YiYj

∣∣Di = d,Dj = q
]

= E
[(
ȳi(Di) + eij + uij

)(
ȳj(Dj) + eji + uji

) ∣∣∣Di = d,Dj = q
]

= ȳi(d)ȳj(q) + ȳi(d)eji(q, d) + ȳj(q)eij(d, q) + eij(d, q)eji(q, d)

+ Cov(uij, uji |Di = d,Dj = q)
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which follows from E[uij |Di = d,Dj = q] = 0. So:

E

[
1

n2

n∑
i=1

n∑
j=1

[1− Sij(Di, Dj)](Dia −Dib)(Dja −Djb)

πij(Di, Dj) + Sij(Di, Dj)
YiYj

]

=
1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(a, a)

]
ȳi(a)ȳj(a) +

1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(b, b)

]
ȳi(b)ȳj(b)

− 2

n2

n∑
i=1

∑
j 6=i

[
1− Sij(a, b)

]
ȳi(a)ȳj(b) +

1

n2

n∑
i=1

E
[
Y 2
i

∣∣Di = a
]

+
1

n2

n∑
i=1

E
[
Y 2
i

∣∣Di = b
]

+B4(a, a) +B4(b, b)− 2B4(a, b)

Turning to the expectation of the second term in the variance estimator:

E

[
1

n2

n∑
i=1

n∑
j=1

[
Dia

πi(a)
+

Dib

πi(b)

][
Sij(Di, a) + Sij(Di, b)

]
Y 2
i

]

=
1

n2

n∑
i=1

∑
j 6=i

[
Sij(a, a) + Sij(a, b)

]
E
[
Y 2
i

∣∣Di = a
]

+
1

n2

n∑
i=1

∑
j 6=i

[
Sij(b, a) + Sij(b, b)

]
E
[
Y 2
i

∣∣Di = b
]

+
1

n2

n∑
i=1

E
[
Y 2
i

∣∣Di = a
]

+
1

n2

n∑
i=1

E
[
Y 2
i

∣∣Di = b
]

=
1

n2

n∑
i=1

∑
j 6=i

[
Sij(a, a) + Sij(a, b)

]
[ȳi(a)]2

+
1

n2

n∑
i=1

∑
j 6=i

[
Sij(b, a) + Sij(b, b)

]
[ȳi(b)]

2

+
1

n2

n∑
i=1

E
[
Y 2
i

∣∣Di = a
]

+
1

n2

n∑
i=1

E
[
Y 2
i

∣∣Di = b
]

+B3(a) +B3(b)

because:

E
[
Y 2
i

∣∣Di = d
]

= E
[(
ȳi(Di) + εi

)2 ∣∣Di = d
]

= [ȳi(d)]2 + Var(εi |Di = d)

since E[εi |Di = d] = 0.
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Combined, this gives:

E
[
V̂aras

(
τ̂(a, b)

)]
= E

[(
τ̂(a, b)

)2]− 1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(a, a)

]
ȳi(a)ȳj(a)

− 1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(b, b)

]
ȳi(b)ȳj(b)

+
2

n2

n∑
i=1

∑
j 6=i

[
1− Sij(a, b)

]
ȳi(a)ȳj(b)

+
1

n2

n∑
i=1

∑
j 6=i

[
Sij(a, a) + Sij(a, b)

]
[ȳi(a)]2

+
1

n2

n∑
i=1

∑
j 6=i

[
Sij(b, a) + Sij(b, b)

]
[ȳi(b)]

2

+B3(a) +B3(b) + 2B4(a, b)−B4(a, a)−B4(b, b)

Note that Sij(d, d) = Sji(d, d), so:

1

n2

n∑
i=1

∑
j 6=i

Sij(d, d)[ȳi(d)]2 =
1

2n2

n∑
i=1

∑
j 6=i

Sij(d, d)
[
[ȳi(d)]2 + [ȳj(d)]2

]
=

1

2n2

n∑
i=1

∑
j 6=i

Sij(d, d)
[[
ȳi(d) + ȳj(d)

]2 − 2ȳi(d)ȳj(d)
]

=
1

2n2

n∑
i=1

∑
j 6=i

Sij(d, d)
[
ȳi(d) + ȳj(d)

]2
− 1

n2

n∑
i=1

∑
j 6=i

Sij(d, d)ȳi(d)ȳj(d)

Also Sij(d, q) = Sji(q, d), so:

1

n2

n∑
i=1

∑
j 6=i

Sij(d, q)[ȳi(d)]2 +
1

n2

n∑
i=1

∑
j 6=i

Sji(q, d)[ȳj(q)]
2

=
1

n2

n∑
i=1

∑
j 6=i

Sij(d, q)
[
[ȳi(d)]2 + [ȳj(q)]

2
]

=
1

n2

n∑
i=1

∑
j 6=i

Sij(d, q)
[[
ȳi(d)− ȳj(q)

]2
+ 2ȳi(d)ȳj(q)

]
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=
1

n2

n∑
i=1

∑
j 6=i

Sij(d, q)
[
ȳi(d)− ȳj(q)

]2
+

2

n2

n∑
i=1

∑
j 6=i

Sij(d, q)ȳi(d)ȳj(q)

This gives:

E
[
V̂aras

(
τ̂(a, b)

)]
= E

[(
τ̂(a, b)

)2]− 1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(a, a)

]
ȳi(a)ȳj(a)

− 1

n2

n∑
i=1

∑
j 6=i

[
1− Sij(b, b)

]
ȳi(b)ȳj(b)

+
2

n2

n∑
i=1

∑
j 6=i

[
1− Sij(a, b)

]
ȳi(a)ȳj(b)

− 1

n2

n∑
i=1

∑
j 6=i

Sij(a, a)ȳi(a)ȳj(a)− 1

n2

n∑
i=1

∑
j 6=i

Sij(b, b)ȳi(b)ȳj(b)

+
2

n2

n∑
i=1

∑
j 6=i

Sij(a, b)ȳi(a)ȳj(b) +B2(a, b) +B2(b, a)

+B3(a) +B3(b) + 2B4(a, b)−B4(a, a)−B4(b, b)

= E
[(
τ̂(a, b)

)2]− 1

n2

n∑
i=1

∑
j 6=i

ȳi(a)ȳj(a)− 1

n2

n∑
i=1

∑
j 6=i

ȳi(b)ȳj(b)

+
2

n2

n∑
i=1

∑
j 6=i

ȳi(a)ȳj(b) +B2(a, b) +B2(b, a)

+B3(a) +B3(b) + 2B4(a, b)−B4(a, a)−B4(b, b)

Recall:

B1 =
1

n2

n∑
i=1

[
ȳi(a)− ȳi(b)

]2
=

1

n2

n∑
i=1

[ȳi(a)]2 +
1

n2

n∑
i=1

[ȳi(b)]
2 − 2

n2

n∑
i=1

ȳi(a)ȳi(b)

so:

1

n2

n∑
i=1

∑
j 6=i

ȳi(a)ȳj(a) +
1

n2

n∑
i=1

∑
j 6=i

ȳi(b)ȳj(b)−
2

n2

n∑
i=1

∑
j 6=i

ȳi(a)ȳj(b)

=
1

n2

n∑
i=1

n∑
j=1

[
ȳi(a)ȳj(a) + ȳi(b)ȳj(b)− 2ȳi(a)ȳj(b)

]
−B1
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and:

E
[
V̂aras

(
τ̂(a, b)

)]
= E

[(
τ̂(a, b)

)2]− 1

n2

n∑
i=1

n∑
j=1

[
ȳi(a)ȳj(a) + ȳi(b)ȳj(b)− 2ȳi(a)ȳj(b)

]
+B1 +B2(a, b) +B2(b, a) +B3(a) +B3(b)

+ 2B4(a, b)−B4(a, a)−B4(b, b)

Finally:

1

n2

n∑
i=1

n∑
j=1

[
ȳi(a)ȳj(a) + ȳi(b)ȳj(b)− 2ȳi(a)ȳj(b)

]
=

1

n2

n∑
i=1

n∑
j=1

[
ȳi(a)− ȳi(b)

][
ȳj(a)− ȳj(b)

]
=

(
1

n

n∑
i=1

[
ȳi(a)− ȳi(b)

])2

=
(
τ(a, b)

)2
so:

E
[(
τ̂(a, b)

)2]− (τ(a, b)
)2

=
(

E
[
τ̂(a, b)

])2
= Var

(
τ̂(a, b)

)
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